2002

An Equity Paradigm for Preventing Genetic Discrimination

Anita Silvers

Michael Ashley Stein

Repository Citation
Silvers, Anita and Stein, Michael Ashley, 'An Equity Paradigm for Preventing Genetic Discrimination' (2002). Faculty Publications. 708.
https://scholarship.law.wm.edu/facpubs/708

Copyright c 2002 by the authors. This article is brought to you by the William & Mary Law School Scholarship Repository.
https://scholarship.law.wm.edu/facpubs
An Equality Paradigm for Preventing Genetic Discrimination

Anita Silvers*

Michael Ashley Stein**

INTRODUCTION ... 1342

I. BENEFITS AND COSTS OF PREDICTIVE GENETIC TESTING .. 1346
 A. Predictive Genetic Testing .. 1346
 B. Potential Benefits of Predictive Testing 1348
 C. Potential Costs of Predictive Testing 1349

II. THE PRIVACY MODEL AND ITS LIMITATIONS .. 1352
 A. The Privacy Model .. 1353
 B. Limitations of the Privacy Model 1355

III. ANTIDISCRIMINATION MODELS AND THEIR LIMITATIONS ... 1359
 A. The Genetic Discrimination Model 1359
 B. The Disability Discrimination Model 1360
 C. Limitations of the Disability Discrimination Model 1364
 D. The “Regarded As” Classification 1370
 E. Putative Federal Protection .. 1374

IV. DECIDING WHO SHOULD BE PROTECTED ... 1379
 A. Bifurcating the Population ... 1379
 B. Statistical Probability and Social Cost 1381
 C. The Equality Model .. 1388
 D. Reconceptualizing the Protected Class 1391

CONCLUSION ... 1395
INTRODUCTION

On June 26, 2000, scientists announced at a White House news conference that they had completed mapping the human genome sequence, the human race’s genetic blueprint. This pronouncement generated tremendous and well-deserved excitement. Genomics, the study and application of genetic information, promises to be an unparalleled tool for improving public health. Genetic testing can identify asymptomatic individuals who are at risk of becoming ill themselves or bestowing illness on their children. As a result, individuals who test positive can take prophylactic measures to slow or stop disease and can also reduce the births of progeny at high risk of compromised health. At the same time, predictive genetic testing...
threatens unprecedented harm in its potential to engender (and then defend on the grounds of alleged statistical probability) discriminatory treatment in employment.5 Consequently, scientists most involved in the Human Genome Project6 and politicians most supportive of it7 recommend strong legal protections against genetic discrimination.

Nevertheless, while the Constitution8 and the Privacy Act of 19749 provide some protection against the collection, use, and dissemination of genetic information on privacy grounds, effective federal regulations specifically protecting individuals from genetic discrimination in employment are almost nonexistent. Specifically, a single executive order bars federal agencies from discriminating in employment on the basis of "genetic information."10 Despite repeatedly voiced intentions, Congress has yet to pass legislation specifically prohibiting misuse of genetic information in the area of employment, although a five-year-old bill is once more pending.11 Notably, the Equal Employment Opportunity Commission ("EEOC") has had mixed initial success in applying the antidiscrimination provisions of the Americans with Disabilities Act ("ADA")12 to the realm of genetic discrimination.13 By contrast, the scope of state statutes varies by jurisdiction. About half of the jurisdictions prohibit workplace

ethical acceptability of somatic gene therapy, germ-line therapy, and somatic or germ-line modification).

5. While we discuss employment and health care related aspects of these potential harms throughout this Article, it bears noting that the potential harm we describe also extends to other areas such as immigration and workmen's compensation.

7. For example, while Dr. Francis Collins "praised[] the mapping announcement as having discovered the 'book of life,' " President Clinton cautioned, "[W]e must guarantee that genetic information cannot be used to stigmatize or discriminate against any individual or group." Reading the Book of Life: White House Remarks on Decoding of Genome, N.Y. TIMES, June 27, 2000, at F8.

8. The Fourth, Fifth, and Fourteenth Amendments are particularly applicable. U.S. CONST. amends. IV, V, XIV. See discussion infra Part II.A.

13. See infra Part III.B-D.
discrimination on the basis of genetic information, and a handful of jurisdictions have established individuals' property rights to their personal DNA information. 14

What federal protection that does exist or is under consideration—as public law, executive order, or agency guideline—has been developed within theoretical frameworks that fit poorly with the realities of genetic discrimination. These statutes, orders, and guidelines have been designed either to protect against violation of individuals' privacy or to ensure their equal treatment in obtaining social goods, services, and opportunities by prohibiting discriminatory actions. 15 Ethicists and legal scholars divide on whether these harms are properly conceptualized as "discrimination" and whether privacy or equal opportunity is the main right we need to protect. 16

In this Article we argue for the creation of an equality-based protection similar to the protection that exists for race and sex discrimination. In doing so, we explore the confluence of genetic and disability discrimination and discuss some problems inherent in current approaches to statutory protection in both of these areas. 17 We show that the ADA, as well as current and proposed genetic discrimination laws, bifurcates the population into protected and unprotected groups. The ADA and specialized genetic discrimination law protect different groups that are, essentially, mirror images of each other while leaving an important part of the population unprotected. 18 In practice the ADA applies only to those individuals who are seriously symptomatic, 19 while genetic discrimination law extends only to those who are either nonsymptomatic 20 or asymptomatic. 21 Falling between these two poles and thus lacking

14. One example, infra note 130 and accompanying text, is the 1996 New Jersey Genetic Privacy Act, N.J. REV. STAT. § 17B:30-12 (1996).
16. Assertions that treating people differently based on their genetic makeup is logical rather than discriminatory are set forth and addressed below in Part IV.B.
17. See infra Part III.
18. Id.
19. “Seriously symptomatic” refers to those individuals whose symptoms substantially limit major life activities.
20. “Nonsymptomatic” refers to those individuals who have no symptoms.
21. “Asymptomatic” refers to those who have a disease with a known causative agent but who have not shown symptoms of that condition. One example is an individual, like Sydney Abbott (who we discuss in the context of her Supreme Court case in Part III.C-D), who tests positive for the virus that causes AIDS (HIV) but is asymptomatic.
protection is a large group of presymptomatic individuals with genetic anomalies that may never be expressed or, if expressed, may not manifest as unmitigatable functional impairments. Because excluding this latter category of individuals from labor market participation (and attendant social opportunities) is probabilistically unjustifiable as well as enormously costly to society, we advocate their inclusion in the classification of the group targeted for genetic discrimination protection. We also set to rest fears that broadly extending protection will increase transactional costs for everyone. In making these assertions, we therefore diverge widely from existing legal scholarship. To date, commentators have advocated either greater application of the ADA to cases of genetic discrimination, or else the enactment of new legislation addressed solely to genetic discrimination, without either noting or addressing the exclusion from coverage of an important class of presymptomatic individuals.

Part I describes predictive genetic testing. It then considers genomics' most pertinent potential benefits and costs, those of regulating risks of illness and of discriminating against individuals on the basis of that information. Part II evaluates the privacy model of protection and explains how this framework fails to correspond to the challenges presented by the misuse of genetic information in the workplace. Part III assesses existing and potential disability and genetic antidiscrimination models and their limitations. Part IV begins by examining how these antidiscrimination approaches

22. See infra Part IV.
23. Id.
24. Id.
25. An early and well-argued example is Mark A. Rothstein, Genetic Discrimination in Employment and the Americans with Disabilities Act, 29 HOUS. L. REV. 23 (1992). For a more recent example, see Eugenia Liu, Bragdon v. Abbott: Extending the Americans with Disabilities Act to Asymptomatic Individuals, 3 J. HEALTH CARE L. & POLY 382 (2000). A lone exception among legal academic treatments is the brief (but astute) "counterpoint" essay, Henry T. Greely, Genotype Discrimination: The Complex Case for Some Legislative Protection, 149 U. PA. L. REV. 1483 (2001). Moreover, although we do not explicitly engage their assertions in this Article, commentators have either supported or rejected the doctrine of genetic exceptionalism by arguing that protection against genetic discrimination requires specially targeted legislation because of the unique characteristics of genetic information or that familiar broad approaches to protection will suffice because genetic information introduces no new problems. See, e.g., Sonia M. Suter, The Allure and Peril of Genetics Exceptionalism: Do We Need Special Genetics Legislation?, 79 WASH. U. L.Q. 669 (2001). We agree with genetic exceptionalists as to the especially problematic character of genetic information, but believe that advantage is not necessarily gained by specifically targeted employment protections.
26. See infra Part I.A.
27. See infra Part I.B-C.
28. See infra Part II.
29. See infra Part III.
bifurcate the population into protected and unprotected groups while leaving the large group of presymptomatic individuals for whom mitigating measures may be effective against the manifestation of genetic disease unprotected from discrimination. Part IV proceeds to demonstrate how excluding this latter category of individuals from employment opportunities is both probabilistically unjustifiable and enormously costly to society. To ensure that this group of individuals receives equality of opportunity, we develop a new paradigm that safeguards individuals against genetic discrimination on an equality basis similar to the protection extended to race and sex. Part IV concludes by discussing what such paradigm-shifting legislation would entail.

I. BENEFITS AND COSTS OF PREDICTIVE GENETIC TESTING

The potential benefits of predictive genetic testing as a risk regulator are enormous, limited only by the rate at which scientists acquire greater knowledge of the human genome and its applications. Concurrent with these benefits are prospective harms that could arise from misuse of this information to discriminate against individuals on the ground of statistical probability.

A. Predictive Genetic Testing

Predictive genetic testing typically is used to learn whether individuals who do not currently exhibit symptoms of certain diseases are at a higher than usual risk of developing them. The disease may be caused by a variation in a single gene, may be polygenic, or may result from environmental factors that are exacerbated by genetic factors. Predictive genetic testing usually involves examining sample material taken from the individual whose degree of risk is being

30. See infra Part IV.A.
31. See infra Part IV.B.
32. See infra Part IV.C.
33. See infra Part IV.D.
assessed. Sometimes, however, family members are tested to identify genetic markers that suggest the existence of a heritable anomaly.

Tests used to make predictions about asymptomatic people may also be used as a diagnostic tool after symptoms appear. Genetic testing can indicate that unusual respiratory infections are the result of cystic fibrosis, that elevated cholesterol arises from hypercholesterolemia rather than diet, or that neurological symptoms herald the onset of Huntington’s disease.

The degree of probability with which a genetic test predicts the onset of disease depends on many factors, among which are variances in gene expression, accuracy of the test, and the stability of linkage between genetic markers and suspect genes. Only a few diseases are caused by genetic anomalies with one hundred percent penetrance—that is, genes whose presence invariably leads to development of the disease. Some genetic tests suffer from a high occurrence of false positives and/or false negatives. And genetic recombination can interfere with the predictive value of genetic markers. Nevertheless, commentators have observed that “despite these known uncertainties and imprecisions, our aversion to disability is so great that people who receive a positive result for a disabling genetic condition may be stigmatized.”

37. See generally DORIS TEICHLER-ZALLEN, DOES IT RUN IN THE FAMILY?: A CONSUMER’S GUIDE TO DNA TESTING FOR GENETIC DISORDERS (1997).
38. Id.
39. Faulty genes can result in excessively salty sweat secretions that adhere to lung coating-mucus, which is part of the clinical picture of cystic fibrosis. See Daniel Green, Testing Ground for Gene Therapy: Cystic Fibrosis is Heavily Researched but Progress has been Faltering, FIN. TIMES (London), Feb. 27, 1996, at 12.
40. See generally A. Simon et al., Comparison of Cardiovascular Risk Profile Between Male Employees of Two Automotive Companies in France and Sweden, 13 EUR. J. EPIDEMIOLOGY 885 (1997) (assessing risk factors).
41. Among the indicators of Huntington’s disease are chorea and dementia. See generally STEDMAN’S MEDICAL DICTIONARY 343 (27th ed. 2000).
43. Id.
44. Id.
45. See infra Part IV.B (providing a greater exposition of these difficulties).
To mitigate responsibility for an employee's injury or disease, an employer might argue that the individual was pathologically disposed to such an outcome by, for instance, a gene for carpal tunnel syndrome ("CTS") or beryliosis. In this regard, confidence in the accuracy of genetic testing varies greatly, with a tendency to exaggerate in both directions. Neither now nor in the future will someone's genetic makeup forecast that person's future health condition with certainty. On the other hand, it is equally misleading to say that basing health predictions on genetic testing is "little more than medical speculation."

B. Potential Benefits of Predictive Testing

Predictive testing can have several benefits. Predictive genetic testing can reveal individuals' predisposition for genetic conditions associated with disability. When families display a high incidence of an early onset heritable disease, a positive result may enable individuals to prepare for the condition's onset. In some conditions, such as hemochromatosis and Wilson's disease, prophylactic measures to prevent or delay symptoms or therapeutic measures to mitigate or eliminate symptoms may be effective. Detection within a medical setting may confer the indirect benefits of clinical quality controls, genetic counseling, and physician fiduciary obligations.

47. See Rosalyn S. Carson-DeWitt, Carpal Tunnel Syndrome, GALE ENCYCLOPEDIA OF MEDICINE 599-600 (1999) (delineating the possible origins of CTS).
48. Beryliosis is "[b]eryllium poisoning ... from inhalation of beryllium." See STEDMAN'S MEDICAL DICTIONARY, supra note 41, at 199.
49. For example, the claim that a particular gene "predicts colon cancer with almost cruel certainty" is probably misleading. Jonathan Bor, Gene Causing Colon Cancer Found: Discovery at Hopkins Expected to Save Thousands of Lives, BALT. SUN, May 6, 1993, at A1.
52. Id. at 45 (suggesting that the aims of predictive genetic testing include managing disease progression and providing reproductive options).
53. Hemochromatosis is an inherited metabolic disorder characterized by the overabsorption of iron. See STEDMAN'S MEDICAL DICTIONARY, supra note 41, at 801.
54. Wilson's disease is an autosomal recessively inherited disorder affecting copper metabolism. See id. at 522.
55. For example, hemochromatosis is normally treated through venesection therapy. See generally Pierre Brisset et al., Clinical Aspects of Hemochromatosis, 23 TRANSFUSION SCI. 193 (2000).
56. See Satz & Silvers, Disability and Biotechnology, supra note 46, at 173.
Further, when an individual's family medical history demonstrates a propensity toward a particular type of disease, a negative test result may enable that individual to avoid discriminatory treatment. Likewise, if ergonomic, environmental, or other conditions at a work site are likely to bring on pathologies that may have a genetic component, such as beryliosis or carpal tunnel injury, a negative test result may mitigate concern and match individuals in the workforce with jobs they can handle safely. The individual who tests negative may be able to plan a career or expect to have offspring. Learning that one is not genetically disposed to a prevalent familial disease may allow otherwise unavailable opportunities. Individuals who fear themselves to be at high risk of pathology may refrain from pursuing these opportunities, or society may deny them to people believed to be at risk. Proof that they are not at risk will reassure them of their ability to succeed in endeavors aversive for people who develop the disease.

C. Potential Costs of Predictive Testing

Concurrent with the benefits to public health described above, predictive genetic testing also has tremendous potential to precipitate discriminatory treatment in employment-related opportunities and benefits. An example of this potential for harm, and one to which we will return below when assessing the applicability of the ADA to genetic discrimination, is a case settled early last year: EEOC v. Burlington Northern Santa Fe Railroad. Claimants in Burlington Northern, through their EEOC attorneys, alleged genetic discrimination as the result of the railroad's national policy of

57. For example, family screening—mostly focused on siblings—is considered medically imperative based on incidence of hemochromatosis. See Brissot, supra note 55, at 197-99.

58. "Ergonomic" refers to the impact upon human physiology caused by the manner in which given employment is physically structured. For a general treatment, see T.S. CLARK & E.N. CORLETT, THE ERGONOMICS OF WORKSPACES AND MACHINES: A DESIGN MANUAL (2d ed. 1995).

59. An obvious example of an environmentally induced condition is pneumoconiosis, which, when expressed as "Black Lung Disease," is frequently attributable to the inhalation of coal dust by miners. See Fact Sheet: Occupational Lung Disease, STATE OF THE AIR (American Lung Ass'n), Sept. 2000, at http://www.lungusa.org/diseases/occupational_factsheet.html.

61. See infra Part III.B-D.

requiring union members claiming to suffer from CTS to submit to DNA tests to determine whether those workers were predisposed to carpal tunnel injuries.63

According to Dr. Francis Collins, Director of the Human Genome Project, possibly one in ten thousand individuals may have such a genetic disposition.64 In processing claims for compensation by workers who had undergone surgery for CTS, Burlington Northern required the individuals to submit to blood tests without obtaining consent for their use in genetic testing.65 At least one worker claimed he was threatened with discharge for not permitting the blood to be drawn.66 Because no federal law specifically prohibited a private employer from genetically discriminating against its workers, the EEOC formulated its charges based upon an expansive reading of the ADA that had been previously encoded in its enforcement guidelines but never directly tested in court.67 After a flurry of publicity that characterized Burlington Northern as having opened the door to victimizing citizens on the basis of their genetic heritage,68 defendants settled their claims prior to trial, with the elimination of future genetic testing as part of the remedy.69

Regardless of its outcome, this case serves as a beacon illuminating a troubling future.70 It warns people that they may have to absorb liability for injuries to themselves, if whoever has precipitated those injuries can show that they are less than normally

63 Id.

64 See CBS News: 60 Minutes II, Should Your Boss Know Your Genetic Predispositions, (CBS television broadcast, Apr. 10, 2001).

65 This requirement extended both to instances of worker compensation claims, as well as to cases of alleged work-related carpal tunnel injuries. See Burlington Northern Complaint, supra note 62. Descriptions of the case and its disposition exist in a number of contexts, with one of the more accurate accounts being the EEOC’s press release. Press Release, U.S. Equal Employment Opportunity Comm’n, EEOC Settles ADA Suit Against BNSF Genetic Bias (Apr. 18, 2001), at http://www.eeoc.gov/press/4-18-0l.html [hereinafter EEOC Burlington Northern Press Release]; see also Paul Steven Miller, Genetic Discrimination in the Workplace, 3 GENETICS MED. 165 (2001), reprinted in 3 AAPD NEWS 8 (2001) (both on file with authors) (providing description by an EEOC Commissioner).

66 See Burlington Northern Complaint, supra note 62.

67 See discussion infra Part III.B-D.

68 Beyond national print journalism coverage, a Web search conducted in July 2001 reveals at least 842 results, many of which follow this characterization.

69 See EEOC Burlington Northern Press Release, supra note 65. Other concessions included the company’s agreement to neither analyze or utilize previously collected genetic materials, to refrain from retaliation against employees who had opposed their policy, and to lobby on behalf of pending federal legislation prohibiting genetic discrimination. Id.

70 We discuss the opposite result in EEOC v. Woodbridge Corp., where a district court granted summary judgment to defendants based upon the plaintiffs’ failure to satisfy the ADA’s “regarded as” criteria for coverage within the context of genetic testing. 124 F. Supp. 2d 1132, 1138-39 (W.D. Mo. 2000); see also 19 NAT'L DISABILITY L. REP. 114 (2000); see infra Part III.D.
resistant to being injured. The creation of a category of asymptomatic people classified as genetically flawed, who are for that reason left unprotected against the denial of employment opportunities, compensation, and benefits, invites defensive strategies against assignment to this class. The first obvious line of defense is to evade genetic testing. If people adopt this strategy, as they are likely to do, they will impede the realization of genomics' contributions to both personal welfare and social good. Not only will they relinquish well-targeted prophylactic and therapeutic intervention for themselves, they also will obstruct others from obtaining knowledge about their own genes by refusing to participate in procedures that involve family participation (such as the test for Huntington's disease) or in research that requires human-subject participation by individuals with certain familial histories (such as research on genetic dispositions to breast cancer or Alzheimer's disease).

Fear of discrimination thus has the potential to block benefits that otherwise might be gained from genomic knowledge. But how much reality is there in these fears? Undoubtedly, some people are subjected to disadvantageous treatment because they likely have or will develop a genetically based illness or disability. For example, a recent survey by the Eunice Kennedy Shriver Center discovered nearly six hundred cases where, based on beliefs about their predispositions to genetic diseases, individuals lost employment opportunities. In a well-known case in Australia, a young man whose mother had died of Huntington's disease was denied employment in the public sector, in the career for which he had been educated, unless he agreed to a genetic test and the test results were negative. Many other examples can be amassed. Nevertheless, the current extent of genetic discrimination in employment is not known, especially if we restrict the evidence of it to reported legal decisions in which results of

73. See Julian Borger, Health Warning as DNA Screening Takes Hold, Americans Find it Can Leave Them Unemployed and Uninsured: Who's Testing our Genes—and Why?, GUARDIAN (London), Sept. 19, 2000, at 15. These cases also involved the loss of insurance benefits. Id. The Shriver Center, which is a division of the University of Massachusetts Medical School, conducts both biobehavioral and biomedical research and is available online at http://www.shriver.org.

75. See Borger, supra note 73 and accompanying text.
genetic tests, rather than existing symptoms or family histories, play the decisive role.76

The Council for Responsible Genetics has two hundred allegations of genetic discrimination by employers on file.77 Variations in these cases illustrate how different kinds of information about an individual's genetic condition may play a role. For example, a social worker was dismissed a week after mentioning that her mother had died of Huntington's disease.78 The worker in another case participated in a research project and tested positive for a mutation of the \textit{BRCA1} gene, a mutation that correlates with breast and ovarian cancer in young women.79 She opted for prophylactic surgery, which appreciably lowered her risk by removing breasts, uterus, and ovaries, the sites of vulnerable tissue.80 Nevertheless, she subsequently lost her job.81 Although both cases involve heritable diseases, the former turns on knowledge of familial history and the second on knowledge of molecular medicine. Are they sufficiently similar to qualify as genetic discrimination? We need to clarify whether the target for statutory protection against genetic discrimination includes all individuals at risk for inheritable pathological conditions or just those whose conditions are discovered through predictive genetic testing. We will argue below that, due to the enormous social cost of permitting a large group of individuals to be stripped of labor market productivity, statutory protection against genetic discrimination ought to be very broad.82

\section*{II. The Privacy Model and Its Limitations}

In the main, two lines of thought about the grounds for protection against genetic discrimination have been pursued. Initially, the appeal was to citizens' privacy rights. More recently, antidiscrimination safeguards have been invoked. This part analyzes the privacy model and examines some of its limitations.

\begin{thebibliography}{99}
\bibitem{77} See Borger, \textit{supra} note 73, at 15.
\bibitem{78} Id.
\bibitem{79} Id.
\bibitem{80} Id.
\bibitem{81} Id.
\bibitem{82} See \textit{infra} Part IV.
\end{thebibliography}
A. The Privacy Model

Several areas of U.S. law address privacy rights. One is constitutional law, especially applications of the Fourth, Fifth, and Fourteenth Amendments. Here the emphasis is on preserving individuals' control over that intimate information that affects the core of personal identity. The social and legal space individuals need to develop the emotional, cognitive, and spiritual dimensions essential to autonomous beings is the domain cloaked by the right to privacy. Thus, for example, citizens have the right to affiliate with marriage partners regardless of whether their choice threatens the stability of prevailing social convention, to engage in unregulated sexual practice with a marriage partner, and to avoid becoming a parent. Whether citizens have the concomitant right to decide to become parents with no intrusion by the state is more problematic. *Skinner v. Oklahoma*, a case in which the Supreme Court declared unconstitutional a state statute decreeing the sterilization of three-time convicted offenders, is usually cited in support of the claim to this right. There, however, the Court analyzed *Skinner* as an equal protection case and threw out Oklahoma's statute because the legislative record offered no evidence for preventing thieves' reproduction but not that of embezzlers. As the concurring Justices pointed out, however, the *Skinner* decision did not preclude states from interfering with individuals' reproductive freedom so long as legislatures either construe their socially undesirable characteristics as heritable or associate heritable undesirable characteristics with the individual's class. In the latter instance, individuals might be subject to sterilization based on no more than a showing of their membership in a class with a greater than species-typical probability of transmitting socially undesirable characteristics.

83. U.S. CONST. amends. IV, V, XIV.
85. See, e.g., *Bowers v. Hardwick*, 478 U.S. 186 (1986) (upholding Georgia's sodomy restriction, while approving similar conduct within the boundaries of heterosexual marriage).
87. 316 U.S. 535 (1942).
88. Id. at 538-39.
89. Id. at 544-45.
90. Id.
Tort law also offers individuals some privacy protection. In general, citizens may not intrude upon each other’s private affairs by disclosing misleading or embarrassing personal facts, especially those constitutive of personal identity. Such personal information is conceived to have been wrongly appropriated if disclosed for advantage or profit without the person’s consent. Here, however, statute and precedent present a complex picture about the ways that various personal facts may or may not be constitutive of personal identity, as well as the conditions under which consent to disclosure may be required or presumed.

Evidentiary privileges, contract and property law, and federal and state statutes also protect privacy rights. Medical patients’ privacy is covered by a patchwork of federal and state provisions, including the accrediting standards for hospitals. The Privacy Act of 1974 limits federal agencies’ uses of information to those that are “relevant and necessary” for their authorized mandates, permits individuals to access their own records and to request emendations, and proscribes the disclosure of information to third parties. Another example, the 1996 New Jersey Genetic Privacy Act, makes genetic information the patient’s private property (regardless of who has paid for the genetic tests) and requires informed consent to any disclosure of test results. Employment discrimination is addressed in these statutes, but it is addressed through a privacy approach. Specifically, employers cannot fail to hire an individual based on the applicant’s refusal to submit to genetic tests because those who insist on the privacy of their genetic information cannot be penalized thereby.

Even where not explicitly banned, intrusions into the privacy of an individual’s biological condition may be deflected by other protections. The Ninth Circuit’s ruling in Norman-Bloodsaw v. Lawrence Berkeley Laboratory examined the issue of disparate

92. See id.
98. See id. A few other states have passed similar provisions. See, e.g., COLO. REV. STAT. ANN. § 10-3-1104.7(1)(a) (West 2001); FLA. STAT. ANN. § 760.40(2)(a) (West 1997 & Supp. 2002); GA. CODE ANN. § 33-54-1(1) (Harrison 1996).
treatment with respect to an employer's invasions of privacy. In *Norman-Bloodsaw*, the employer required employees to provide blood samples and submitted the samples to panels of tests. People of color were tested for syphilis (as was only one Caucasian employee, who happened to be married to an African-American woman). They were retested for syphilis (not a genetic test) regularly. African-Americans were recurrently examined for the sickle-cell gene, despite a single test's sufficiency to identify the presence of the gene. The employer claimed that blood-testing policies were designed to promote the good health of employees. The employer also represented that the tests were simply part of an overall health benefits program that administered EKGs more regularly to men in the age group at high risk for heart disease than to other employees. Employees testified that they received no beneficial information; individuals who knew, from other sources, that they were sickle-cell carriers were never so informed as a result of Lawrence's testing program.

The *Norman-Bloodsaw* court rebuked laboratory administrators for two related failures. First, although notification of the tests that might be run on samples was posted on a wall, the court did not agree that such notification met the standard of disclosure required for informed consent. Second, people of color—especially African-Americans—suffered from a more egregious pattern of testing without their consent than did Caucasian employees.

B. Limitations of the Privacy Model

On the privacy model, a person's genetic information is her property and, consequently, should be under her control. Relatively little litigation has been pursued under genetic privacy statutes.
Nevertheless, we can identify some issues that are likely to divide the courts.

Given the nonmaterial nature of the possessed object, several difficulties about its control arise. First, whose responsibility is it to identify or safeguard sensitive and easily portable genetic information? In many businesses, individuals who administer health care benefits or manage health and safety programs also have responsibility for some aspects of personnel management. In these circumstances, is it feasible to expect employers to maintain a firewall between health care records that may reveal employees' genetic conditions and information used in personnel decisions? Second, when a proprietor waives a privacy right for one purpose, is the information no longer protected from use for other purposes? Third, where more than one person has a property right in certain information, how are their interests prioritized with respect to maintaining control? Finally, do circumstances in which lack of access to the information threatens public safety, places commercial interests at considerable disadvantage, or deprives the subject of significant benefits, override privacy protections? All these questions have elicited complex and sometimes contradictory answers in litigation over privacy and property rights.

The nature of genetic information promises even further complications.

Genetic information about an individual is discovered in several different ways. As in the cases referred to above, a chance remark about family history or response to a formal disclosure requirement may reveal significant data. Data often are accumulated in a medical setting, where informed consent is in principle necessary. In practice, however, patients often are asked to consent only to contributing a specimen or sample or to the use of their body materials for certain panels of tests (as in Burlington.

111. See Rothstein, supra note 109, at 285.

112. While biotechnology companies vie for exclusive rights to genetic information—even to the extent of licensing the genetic information of entire population groups—one commentator has asserted that the intellectual property rights in genetic data are insufficient to "warrant the cost of enforcement by those affected." See Michael S. Yesley, Protecting Genetic Difference, 13 BERKELEY TECH. L.J. 653, 653 (1998).

113. See supra Part II.A.

or they are informed of the tests to be run without specifying what is learned from the tests (as in Norman-Bloodsaw).

The physician may order the panel for one reason, which she discusses with the patient, but the entire set of test results becomes part of the patient’s record. In all of these cases, does the patient’s consent to be tested imply consent to treat all results of the test as ordinary medical records that are available, under the usual conditions, to employers? Or does genetic privacy assign genetic information an especially secure status?

A different version of the aforementioned problem is created by the rapid expansion of genomic knowledge. A genetic anomaly that is correlated with one condition may, in the future, be correlated with another, or anomalies may cluster so that the presence of one suggests the presence of another. To illustrate, individuals who provided DNA to be tested for susceptibility to heart disease could, years later, find that their physicians have recommended suspension of their drivers’ licenses because of new data that the gene has one hundred percent penetrance for a very early onset variation of Alzheimer’s disease. Does their earlier consent to the collection of information regarding heart disease entail similar acquiescence to whatever can be further learned from the genetic material they agreed to have tested?

Unlike some other kinds of possessions, genetic information is often the property of more than one individual at the same time. Genetic makeup is shared among close biological relatives, so test results for one person can yield information about another person. Some tests, such as that for Huntington’s disease, require samples from biological relatives of the patient to isolate genetic markers. In such cases, should we defer to the individual who will benefit from disclosure or to the one who wishes to preserve privacy? The individual-consent mechanism ill fits a technology that is based on the relational nature of genetic information.

Finally, are there considerations that warrant overriding privacy? Several state genetic privacy statutes prohibit employers from requiring genetic testing during the hiring process but permit it

115. See discussion supra Part I.C.
116. See supra notes 99-108 and accompanying text.
117. See supra note 114, at 222-34.
118. See discussion infra Part IV.B.
120. See generally Decruyenaere, supra note 71.
121. See Anita Silvers, Primary Care Physicians and the Duty to Inform About Genetic Discrimination, 1 AM. J. BIOETHICS (forthcoming Summer 2001).
subsequently for occupational safety reasons. In cases in which patients' health conditions endanger others (for instance, where an individual fails to manage her infectious tuberculosis or has a psychiatric condition that makes her a danger to others), courts typically have held that public safety trumps individual rights.

What complicates these judgments in the case of genetically occasioned conditions is the looseness of the connection between testing positive for a gene or marker and becoming symptomatic of the correlated disease. How much evidence of correlation between a gene and disease symptoms must there be, and to what degree must a disease gene be expressed, to warrant curtailing the opportunities of individuals who have inherited it? Is Huntington's disease, which we believe to have one hundred percent penetrance, the paradigm? We know that individuals whose relatives developed certain forms of senile dementia are at higher risk of suffering it themselves than individuals with no family history at all. Yet rarely, if ever, do employers demand such family histories or limit the employment of higher risk family members. Does public safety warrant them doing so if genetic testing rather than family history is involved?

Business necessity, which often constitutes an employer's defense against unfavorable treatment of an employee or customer, is also problematic where access to genetic information is concerned. Should necessity be demonstrated prior to obtaining access to information, or only subsequent to acting on it? What counts as a necessity? Should employers be permitted to require employees who file for workers' compensation to undergo genetic testing only if a

123. The defense originated in School Board of Nassau County v. Arline, 480 U.S. 273 (1987), a case brought under the Rehabilitation Act by a school teacher with tuberculosis. In Arline, the Court held that although an individual with a contagious disease could in fact be excluded from employment while her condition posed a public health danger, she could not be so deprived when that danger abated. Id. at 287 n.16. We revisit this concept when describing the ADA defense of direct threat. See infra Part III.C.

124. This question and the ones that follow are discussed in greater detail below in Part IV.B.

125. In a recent interview on National Public Radio, Karen Wolff, a genetic counselor at the Harvey Institute of Human Genetics in Baltimore, used Huntington's disease as "the best example in the world of genetics" of a predictable but incurable disease. See All Things Considered (National Public Radio broadcast, Feb. 13, 2002).

126. The media have focused extensively on the genetic basis for Alzheimer's disease. See, e.g., Arthur Allen, Memory Lapse—or Alzheimer's?, WASH. POST, May 8, 2001, at T10 (discussing a study of the link between family history and the onset of Alzheimer's disease).
contributing genetic condition is relatively prevalent, so that a good deal of money could be saved by declaring it a preexisting or contributory condition? Or may business necessity warrant testing even where savings would be negligible because the genetic conditions are extremely rare?

III. ANTIDISCRIMINATION MODELS AND THEIR LIMITATIONS

As the realities of collecting and protecting genetic information have become clear, enthusiasm for basing protection on privacy rights has waned. Attention has turned to the antidiscrimination model that is already instantiated in federal and state genetic discrimination and disability discrimination law. In this part we describe the antidiscrimination model and explain some of the problems that arise, in both practice and theory, from its application to genetic discrimination.

In the United States, discussion has centered on the EEOC's application of the ADA to genetic discrimination. In the United Kingdom and Australia, debate has centered on extending these nations' respective Disability Discrimination Acts. At issue in all these discussions is whether it is appropriate and necessary to develop separate protection for individuals with genetic anomalies. Where the privacy model extends protection by sequestering information, the antidiscrimination model assumes that such attempts may be unsuccessful and consequently regulates the uses to which genetic information may be put.

A. The Genetic Discrimination Model

Although current state laws lean heavily on precedents of privacy, antidiscrimination provisions have been sprinkled among them. For example, the first state to enact a genetic discrimination law, North Carolina, prohibited employment discrimination based on
the sickle-cell trait. New Jersey’s genetic privacy law prohibits certain kinds of decisions from being made about an individual because the person is genetically disposed to develop specified diseases.

Effective federal regulation specifically protecting individuals from genetic discrimination is almost nonexistent. A single, narrowly tailored executive order has barred federal agencies from discriminating in employment on the basis of “genetic information” since February 2000. While the substance of this directive is laudable, it must be noted that the number of federal employees pales in comparison to the combined number of employees in the state and private sectors, where protection is most needed. Further, these regulations do not address the perception that protection from genetic discrimination is a matter for civil rights because unfavorable treatment should no more be based on people’s genes than on their genitalia or pigmentation.

B. The Disability Discrimination Model

In addition to measures specifically directed against genetic discrimination, there also exists the potential for application of civil rights legislation—namely the ADA and, more tangentially, Title VII—against such harms. This approach, as seen above in the discussion of Burlington Northern, has been championed by the EEOC with some early success. Statements, congressional

129. In amended form, the statute now also covers people with hemoglobin C traits, which are related. See N.C. GEN. STAT. § 96-28.1 (2001).
130. See 1996 New Jersey Genetic Privacy Act, N.J. REV. STAT. § 17B:30-12(e)-(f) (Supp. 2002).
131. See Executive Order, supra note 10. The promulgation’s formal title is “To Prohibit Discrimination in Federal Employment Based on Genetic Information.” Id.
134. Such legislation may apply when “a significant correlation to race, national origin, religion, or gender” exists with the particular genetic discrimination, as, for example, sickle-cell disease, which disproportionately impacts African-Americans. Miller, supra note 76, at 247.
135. See supra Part I.C.
136. Id.
testimony, and scholarship by EEOC Commissioner Paul Steven Miller indicate that the agency will continue to pursue this line of legal argument.137

Federal courts have required individuals who hope to be safeguarded by the ADA to prove that they have disabilities. Being disabled means having "(a) a physical or mental impairment that substantially limits one or more of the major life activities of such individual; (b) a record of such an impairment; or (c) being regarded as having such an impairment."138 The ADA does not specify application to genetic conditions. There are, however, several reasons for thinking that it may be applicable, at least to some extent.139

First, the congressional record offers some evidence of legislative intent. Congressman Major Owens stated that

[t]hese protections of the ADA will also benefit individuals who are identified through genetic tests as being carriers of a disease-associated gene ... Under the ADA, such individuals may not be discriminated against simply because they may not be qualified for a job sometime in the future. The determination as to whether an individual is qualified ... may not be based on speculation regarding the future.140

Other Congressmen echoed these expectations about the scope of the ADA.141 In sum, Congressmen characterized genetic discrimination as exhibiting the myths, fears, and stereotypes that historically have prevented people perceived as biologically anomalous from enjoying fair equality of opportunity.142

Second, the ADA clearly protects individuals with inherited impairments such as muscular dystrophy, retinitis pigmentosa, osteogenesis imperfecta, achondroplasia, Williams syndrome, and schizophrenia.143 Regardless of the degree to which they are symptomatic, individuals with these genes clearly have the inherited conditions. Some conditions encompass a range of limitations. For instance, the skills of people with Williams syndrome vary from

137. See Part III.B.
139. See infra Part III.C.
141. See id.
142. See id.
143. See Bultmeyer v. Fort Wayne Cmtys. Schs., 100 F.3d 1281, 1284 (7th Cir. 1996) (holding that paranoid schizophrenia is a covered disability under the ADA); Johnson v. Equicom, Inc., 2001 U.S. Dist. LEXIS 18032, *10-11 (N.D. Tex. 2001) (holding that the plaintiff with retinitis pigmentosa had a disability but failed to demonstrate that he was discharged because of his disability); EEOC v. MCI Telecommunications Corp., 995 F. Supp. 726, 728-29 (D. Ariz. 1998) (addressing muscular dystrophy); Duprey v. Conn. Dep't of Motor Vehicles, 28 F. Supp. 2d 702, 703 (D. Conn. 1998) (finding that plaintiff with osteogenesis imperfecta was "limited in the major life activity of walking").
individual to individual. Almost all are exceptionally good at music and bad at math. Some are so seriously limited intellectually as to be classified as mentally retarded, while others attain college and postgraduate degrees. A state that proposed to sterilize all its citizens with Williams syndrome (as some states did in the past) very likely would be charged with disability discrimination under the ADA. In that event, it would be exceedingly disturbing if a court ruled that the ADA protected only the people with Williams syndrome whose condition limits them from finishing elementary or high school, leaving the individuals with Williams syndrome who have finished college with no defense against being sterilized.

Some of the genetic conditions referenced above—for instance, muscular dystrophy and retinitis pigmentosa—are progressive. Individuals who test positive for these genes may be asymptomatic at the time yet face substantial limitation in the future. Whether such individuals are protected while they are asymptomatic remains unclear. Suppose an employer believes, mistakenly, that visually impaired individuals cannot perform a particular job. It would be disquieting if the employer were prohibited from excluding, on the basis of genetic information about the employee’s retinitis, an individual who had already lost his sight due to retinitis but could exclude from employment qualified individuals with the retinitis gene who could see perfectly well.

Third, citing the congressional record, the EEOC has offered guidance that brings actions arising from genetic information relating to genetic disease or disabling conditions under the regulation of the ADA’s “regarded as” criteria. Initially, in March 1995, the EEOC issued an ADA Compliance Manual guideline that instructed that the “regarded as” prong of the definition of “disability” “applies to individuals who are subjected to discrimination on the basis of genetic information relating to illness, disease, or other disorders.” Two subsequent policy and enforcement guidance statements reiterate this

145. Id.
146. See generally Satz & Silvers, supra note 46.
148. See Stedman’s Medical Dictionary, supra note 41, at 558, 1560.
position. The first, issued on July 26, 2000 (on the ADA’s tenth anniversary), reiterated the previous position that discrimination against individuals with disabilities falls under the “regarded as” prong of the ADA pursuant to the EEOC’s enforcement of the executive order. The second, issued a day later, specifically states that blood tests to detect genetic markers or diseases are medical examinations within the ADA’s purview. These pronouncements have been followed in EEOC opinion letters. In sum, the EEOC’s position as explained by Commissioner Miller is that:

[a] person is “regarded as” disabled within the meaning of the ADA, if a covered entity mistakenly believes an individual has a substantially limiting impairment, when in fact, the impairment is not so limiting. Under such a theory, coverage for individuals with a genetic predisposition would generally rely on demonstrating a mistaken belief concerning the major life activity of working.

Although presymptomatic people may reject the idea that they should be assigned to the disability classification, disability discrimination has been practiced against certain groups of presymptomatic people. Moreover, the “logic” of disability discrimination invites this practice. Therefore, the group of presymptomatic people who are vulnerable to disability discrimination could expand enormously as predictive genetic testing becomes more widespread.

A number of legal commentators strongly support application of the ADA to the realm of genetic discrimination precisely on this ground. To date, however, only a handful of cases clearly charging genetic discrimination have been filed by the EEOC, the most prominent (and only successful) one of which was the settlement

155. See sources cited supra note 25.
discussed above, in *Burlington Northern*. A second suit alleging genetic discrimination on the ground of adverse employment decisions grounded in predisposition to carpal tunnel injury, *EEOC v. Woodbridge Corp.*, was dismissed at the summary judgment stage. A claim by Terri Sergeant, a woman allegedly dismissed by her employer after she was identified as a carrier of the Alpha-1 gene, which can express itself as a progressive lung disorder, has received a permission-to-sue letter from the EEOC.

The ADA appears to have potential for protecting against genetic discrimination in employment. Dr. Francis Collins, director of the Human Genome Project, has remarked that “it is estimated that all of us carry dozens of glitches in our DNA As a nation, we have stated unequivocally” in the ADA “that one’s ability to do a job should be judged on just that—the ability to do the job.” Collins has testified that citizens are already declining to serve as subjects in genetic research out of fear that they could be denied a job or a promotion based simply on their participation. Clearly Congress intended to protect citizens who are discriminated against here and now because other people may fear the future effects of the disease for which they are at high risk, but the propriety and effectiveness of doing so by calling these citizens “disabled” is questionable.

C. Limitations of the Disability Discrimination Model

Courts have interpreted the ADA so as to limit the number of people who fall under its protection. In *Sutton v. United Air Lines, Inc.*, one of the Supreme Court’s reasons for refusing protection to plaintiffs rejected from employment on the basis of their myopia was that the number of disabled people in the country would far exceed

156. See supra Part II.C.
157. 263 F.3d 812 (8th Cir. 2001); 19 NAT’L DISABILITY L. REP. 114 (2000).
158. 263 F.3d at 813. The rationale offered by the court is discussed below in Part III.D.
160. The difficulties are discussed infra Part IV.C.
162. See id.
Congress's projections if myopics were included. Nonetheless, in Bragdon v. Abbott, the Supreme Court agreed in principle that asymptomatic individuals might merit disability protection. The Bragdon decision can be interpreted as suggesting that this conclusion holds only when, despite being asymptomatic, the individual nevertheless is limited in respect to major life activities. Were the Bragdon precedent to be taken literally, individuals whose Huntington's disease has not yet manifested would be protected against employment discrimination if they refrained from major life activities such as reproducing, but not otherwise. In addition, Chief Justice Rehnquist's Bragdon dissent that "[r]espondent's argument, taken to its logical extreme, would render every individual with a genetic marker for some debilitating disease 'disabled' here and now because of some possible future effects" has met with approbation in some of the lower courts. Last, in both Albertson's, Inc. v. Kirkingburg and Sutton, the Supreme Court gave clear warning that the deference traditionally granted to federal regulatory agencies may not be extended to the EEOC's understanding of the ADA (which by inference includes its guidelines on genetic discrimination).

Notwithstanding the Court's cautionary language, it is precisely this last theory—that a person can be disabled although asymptomatic or presymptomatic—that has been the basis upon which the EEOC has initiated application of the ADA to genetic discrimination. This legal application invites potential difficulties. Among the most significant is the potential for courts to view asymptomatic individuals as failing to satisfy criteria for protection under the ADA, which would eliminate the legal basis of plaintiff's argument. There also are several defenses that have been successful under the ADA and that can be raised in response to allegations of genetic discrimination. For instance, employers could assert that potentially disabling conditions preclude workers from fulfilling "essential" job functions, thus disqualifying them from ADA protection. Thus, the efficacy of duplicating the EEOC's single
success in applying the ADA to the private employer in \textit{Burlington Northern} is unknown.172

Once an individual is hired, the ADA does not prevent employers from obtaining medical information about employees.173 Indeed, employers are obligated to make reasonable accommodations for workers with known disabilities, and they bear some responsibility for determining whether an individual actually requires an accommodation.174 To protect themselves from the charge of failing to accommodate a worker, employers might reasonably pursue and act upon genetic information.175 For example, an employer might seek to learn whether an employee's vision problems are symptoms of a progressive genetic disease in order to equip that employee's workstation with business software applications compatible with the screenreading programs that the employee eventually may need to use. What would then prevent the same employer from passing over the still sighted individual for training opportunities and promotions thought to be unsuitable for a person who is blind? It would be extremely difficult to prove that the genetic information caused the employer's disregard.176

The ADA also permits employers to limit disabled people's opportunities if their condition prevents them from executing the essential functions of the job,177 because such individuals would fail to satisfy the statutory prerequisite of being "qualified" for that particular employment.178 Although the determination of which job functions are essential in any given dispute may seem at first blush the proper province for a jury determination as fact finder,179 a vast majority of courts have instead deferred to employers' assertions of essentiality,180 and have thus ruled as a matter of law that plaintiffs

\begin{flushleft}
\footnotesize
172 See discussion supra Part II.D.
173 42 U.S.C. § 12112(d) (2000).
174 § 12112(b)(5)(A) (requiring this interactive process).
175 See Fallace, supra note 149, at 4-95 to 4-102.
176 This task is difficult in any context. See generally Susan Sturm, Second Generation Employment Discrimination: A Structural Approach, 101 COLUM. L. REV. 458 (2001) (detailing many of the individual ways in which employment discrimination can manifest and describing the difficulties involved in proving them).
177 See § 12111(8).
178 Id.
179 Summary judgment requires that there be "no genuine issue as to any material fact and that the moving party is entitled to judgment as a matter of law." \textit{Fed. R. Civ. P.} 56.
180 This reinforces much of Sturm's assertion of subtle discrimination in other contexts. See Sturm, supra note 176. Professors Linda Krieger and Lauren Edelman are currently engaged in an empirical study examining the relative weight accorded employers' stipulations as to essentiality in the respective areas of disability, race, and sex. Linda Krieger & Lauren Edelman (unpublished manuscript on file with the authors).
\end{flushleft}
were unqualified for their positions.181 Accordingly, workers with genetic vulnerabilities to materials found in the workplace or to injuries provoked by characteristic workplace tasks seem especially susceptible to rejection on the ground of inability to perform essential functions.

Moreover, employers have gradually extended another existing defense to employment opportunity exclusion under the ADA—that of workers posing a “direct threat.”182 Traditionally, this defense referenced workers either creating a public health risk (paradigmatically, as food handlers) or endangering other employees (for instance, by transmitting communicable diseases).183 The EEOC’s regulation refers to the health and safety of “self” as well as that of “others.”184 Utilizing genetic and other medical information, employers may now be authorized to treat presently or potentially disabled employees adversely on the ground that those workers’ own disabilities directly create risks to themselves.

Until recently, a direct intercircuit conflict existed between the Eleventh Circuit, which recognized this defense, and the Ninth Circuit, which did not.185 In \textit{Echazabal v. Chevron USA, Inc.}, a worker employed by various independent contractors at an oil refinery during

184 29 C.F.R. app. § 1630.2(r) (2001). Section 1630.2 also advises that “the employer must determine whether a reasonable accommodation would . . . eliminate” this direct threat.

185 Compare Moses v. Am. Nonwovens, Inc., 97 F.3d 446 (11th Cir. 1996) (holding that an employee with epilepsy was properly dismissed from his job in a production plant because of the employer’s fear that he would come to harm if he suffered a seizure in proximity to the fast-moving and/or extremely hot machinery near which he was required to work), with Echazabal v. Chevron USA, Inc., 226 F.3d 1063, 1066 (9th Cir. 2000), rev’d, 122 S. Ct. 2045 (2002) (limiting the defense to posing a threat to “other individuals”). Indirect treatments, through dicta, occurred in four other cases, wherein the courts sided with the Eleventh Circuit’s view that direct threats do include threats to one’s self. \textit{See} LaChance v. Duffy’s Draft House, Inc., 146 F.3d 832 (11th Cir. 1998) (involving an epileptic line cook); EEOC v. Amego, Inc., 110 F.3d 135 (1st Cir. 1997) (involving a depressed employee who worked at a group residence for severely disabled individuals); Daugherty v. City of El Paso, 56 F.3d 695 (5th Cir. 1995) (involving an insulin dependent diabetic bus driver).
the previous twenty years applied directly to Chevron for a position in
the same unit.186 Postoffer, preemployment physical examination by
Chevron's physician revealed that Echazabal's liver was secreting
higher than normal levels of certain enzymes.187 As a result, Chevron
rescinded its job offer on the ground that Echazabal's liver might be
damaged by further exposure to chemicals emanating in the plant.188
Echazabal's subsequent consultation with several doctors revealed
that he had asymptomatic hepatitis C.189 Because none of these latter
physicians advised him to stop working in that environment,
Echazabal continued working in the plant for contractors.190 Three
years later a similar fact pattern was repeated.191 Echazabal applied
to Chevron for employment, was extended a job offer contingent on
passing a medical exam, was discovered to have hepatitis C as a result
of the examination, and had his job offer withdrawn.192 This time,
however, Chevron did not allow Echazabal to remain employed at its
refinery.193 Subsequently, Echazabal brought an action against
Chevron194 asserting, among other claims, that the defendant did not
have an affirmative defense under the ADA's direct threat provision to
deny him employment on the ground of his being a danger to
himself.195 The district court granted summary judgment in favor of
Chevron, and Echazabal appealed.196

A three-judge panel of the Eleventh Circuit held two-to-one
that the ADA's "language is dispositive" in limiting the defense to
employment decisions designed to avoid a direct threat to "other
individuals," that the EEOC's interpretation was therefore overly
expansive, and that no other interpretation was plausible.197 In
support of the ruling, Judge Reinhardt presented numerous examples
from the ADA's legislative history.198 Writing for the dissent, Judge

186. 226 F.3d at 1065.
187. Id.
188. Id.
189. Id.
190. Id.
191. Id.
192. Id.
193. Id.
194. Id. The action was brought in state court and subsequently removed by defendant to
federal court. Id.
195. Id.
196. Id. at 1063.
197. Id. at 1066-67. "The fact that the statute consistently defines the direct threat defense
to include only threats to others eliminates any possibility that Congress committed a drafting
error when it omitted from the defense threats to the disabled individual himself." Id.
198. Id. at 1066-72.
Trott noted that the panel had "fortunately" created an intercircuit conflict that "will compel the Supreme Court or Congress to resolve this dispute."199 The plea was prescient, as certiorari was subsequently granted, and a decision was handed down on June 10, 2002.200

Reversing the Eleventh Circuit's ruling, a unanimous Supreme Court held that the EEOC regulation authorized an employer to exclude a disabled employee whose job performance would "endanger his own health."201 The Court did not, however, explicate the standard employers had to meet to justify such exclusion or establish whether Echazabal's liver condition actually posed a danger to himself.202 The possible, although not mandated, revisiting of both the procedural and factual questions was left on remand to the Ninth Circuit.203 Given the Court's broad approbation of the defense, it seems likely that employers will continue to assert that current or future workers ought to be excluded from employment opportunities because their genetic dispositions present threats to their own well-being.

The ADA also contains a partial exemption for insurance coverage. Pursuant to a safe harbor provision in Title V, insurers may offer coverage that adversely impacts individuals with disabilities, so long as the differential treatment is based upon actuarially sound evidence that these individuals pose an expensive risk and is not a "subterfuge to evade" the ADA's antidiscrimination purpose.204 As a result, courts have held that employers are not required to offer any particular coverage to disabled individuals so long as the coverage offered is equal to that offered to nondisabled people.205 Some courts have interpreted the "safe harbor" provision to require proof by disabled plaintiffs of intentional stratagems;206 others have allowed

199 Id. at 1075 (Trott, J., dissenting).
200 Chevron USA, Inc. v. Echazabal, 122 S. Ct. 2045 (2002).
201 Id. at 2047.
202 Id. It bears noting, however, that when describing the harms that Echazhal might cause, Justice Souter did so only in terms of the potential costs (such as tort liability) that would be borne by the employer and did not mention those which might harm Echazabal's own health. Id. at 2052. We discuss the implications in a companion piece, Anita Silvers & Michael Ashley Stein, Disability, Paternalism, and the Supreme Court (unpublished manuscript on file with authors).
203 Echazabal, 122 S. Ct. at 2053.
205 See, e.g., Doe v. Mutual of Omaha Ins. Co., 179 F.3d 557 (7th Cir. 1999); Ford v. Schering-Plough Corp., 145 F.3d 601 (3rd Cir. 1998).
206 See, e.g., Ford, 145 F.3d at 691; Krauel v. Iowa Methodist Med. Ctr., 95 F.3d 674, 678-79 (8th Cir. 1996).
actuarial support to rebut allegations of discrimination,207 a position not inconsistent with that of the EEOC.208

\textbf{D. The "Regarded As" Classification}

Disability discrimination law has followed a trajectory targeted at defining who shall be protected against disability discrimination and who shall not be.209 Seven ADA cases the Supreme Court has heard relate, in one way or another, to this question. \textit{Bragdon} concerned whether an individual with an asymptomatic HIV infection was protected.210 In \textit{Sutton},211 \textit{Kirklingberg},212 \textit{Murphy v. United Parcel Service},213 and \textit{Toyota v. Williams},214 the Court addressed whether people with certain physical limitations—severe myopia, blindness in one eye, extremely elevated blood pressure, and repetitive stress syndrome, respectively—are protected. In \textit{Cleveland v. Policy Management Systems}, the protection of an employee who claimed eligibility for Social Security Disability Insurance ("SSDI") under the ADA was concurrently protected by the ADA.215 And in \textit{University of Alabama v. Garrett}, the protection of state employees was at issue.216

In all but one of these cases, defendants prevailed. Subsequently, a larger proportion of plaintiffs have proceeded under the "regarded as" prong of the ADA.217 Predictive genetic testing typically is done before the individual's genetic condition becomes symptomatic and causes substantial limitations of major life

\begin{flushright}
208 See U.S. EQUAL EMPLOYMENT OPPORTUNITY COMM'N, EEOC INTERIM ENFORCEMENT GUIDELINES 12 (1993). \\
209 In some cases, state law is more embracing than federal law. For instance, recent amendments to California's Fair Employment and Housing legislation specify that employees be protected without regard to the degree of substantiality of their impairments. See CAL. GOV'T CODE § 12940(e)(1), (f)(1) (West 2001). \\
210 524 U.S. 624, 628 (1998). \\
211 527 U.S. 471 (1999). \\
212 527 U.S. 555 (1999). \\
213 527 U.S. 516 (1999). \\
214 534 U.S. 184 (2002). \\
215 526 U.S. 795, 797 (1999). \\
216 276 F.3d 1227 (11th Cir. 2001). \\
\end{flushright}
activities. Therefore, we may expect that individuals who seek remedies for protection against genetic discrimination through the ADA often will claim that they have been treated unfavorably because they are regarded as disabled rather than because they are disabled.

For example, Terri Sergeant, an individual with a family history of Alpha-1 antitrypsin, an often fatal deterioration of the lungs, has filed under the “regarded as” prong. When presymptomatic, Sergeant tested positive for the genetic disposition for this disease, which had killed her brother at age thirty-seven. As a result of the test, her physician initiated preventive therapy that deters the development of the disease and protects against lung infection. This treatment costs more than $45,000 annually but permits her to work and engage in all other life activities without limitations. Sergeant worked for a firm that partially self-insured for employees' health insurance. During her employment, she had repeatedly received outstanding performance evaluations and merit salary increases. In November 1999, seven months after her costly preventive treatment began, she received another excellent review and increase. One month later, her employment was terminated.

Although there is no certainty that Sergeant would have become symptomatic even without the preventive therapy, the prophylactic measures appear to have been effective. Sergeant remains able to perform activities like walking and breathing, major life activities that are severely compromised in symptomatic cases of Alpha-1 antitrypsin. There is no reason to believe that her employers, who observed her daily, regarded her as currently unable to perform these activities, for the medical information indicates that there is no medical question about her work capability provided she has access to expensive medical interventions. The record of

219. Arguments in support of this assertion are set out in Miller, supra note 76, at 240-41.
220. Alpha-1, supra note 159; National Partnership, supra note 159.
221. National Partnership, supra note 159.
222. Id.
223. Alpha-1, supra note 159.
224. Id.
225. Id.
226. Id.
227. Id.
228. National Partnership, supra note 159.
229. Id.
230. See id.
litigation under the “regarded as” clause, however, is insufficiently clear to know whether she will succeed under this theory.231

To establish a claim of being “regarded as” disabled under the ADA,232 the statute requires a plaintiff to demonstrate that her employer mistakenly believed she had a physical or mental impairment that limited a major life activity, when she in fact had no such impairment.233 An example of such a mistaken belief would be an individual who utilizes a lower leg prosthetic device to ameliorate an amputation, but whose functional ability has not actually been impaired.234 Such an individual would be regarded as disabled under the ADA if her employer nevertheless believed her to be limited in a major life activity such as walking or standing. Congress extended the ADA’s definition of disability to this group of functionally nondisabled individuals in order to combat erroneous but widespread cultural assumptions about people with “disabilities”—what the EEOC eloquently terms the “perception of disability based on myth, fear, or stereotype.”235

The current Supreme Court addressed the “regarded as” prong in \textit{Sutton v. United Air Lines, Inc.}, a case involving myopic twins denied employment as pilots by United Air Lines.236 The Court acknowledged the goals underlying the protection of individuals misperceived as having disabilities that were articulated in \textit{Arline}.237 Nevertheless, the \textit{Sutton} Court held that to be regarded as disabled under the ADA a defendant would have to entertain stereotypical misperceptions about a plaintiff’s ability to carry out a broad range of jobs because of the mistaken belief that a nonexistent disability substantially limited her from performing certain major life activities.238 In other words, an employer has to believe that the individual is ecumenically disabled—that she cannot perform an entire range of jobs in addition to the one from which she claims she has been unjustly excluded.239 The Court’s attendant decisions in \textit{Albertson’s, Inc. v. Kirkingburg}240 and \textit{Murphy v. United Parcel...
upheld this ruling without much adumbration. Lower courts have subsequently viewed employers' misperceptions as "innocent mistakes," requiring that group-based animus (i.e., believing that plaintiffs are socially incompetent in a generic sense) be ascribed to defendants as a prerequisite to satisfying the "regarded as" criteria.

The single recorded federal decision to adjudicate a claim of genetic discrimination on the merits, EEOC v. Woodbridge Corp., followed the current Supreme Court's ADA rulings in granting defendant summary judgment (despite the similarity of the case to claims asserted by the EEOC in Burlington Northern). In Woodbridge, the EEOC brought an action on behalf of nineteen job applicants who had successfully applied to work in Woodbridge's polyurethane foam-producing factory. As part of their postoffer, preemployment medical examinations, the plaintiffs were subjected to a neurometry test specially developed to screen for the existence or "significant likelihood" of developing CTS. As the result of the plaintiffs having scored above a certain level on that test, they were each denied employment at the defendant's factory.

Plaintiffs through their EEOC attorneys asserted that applicants for other jobs in the factory—including electricians and tool technicians who also placed stress upon their wrist joints—had not been subjected to the test. They also claimed that because of the neurometry screening, Woodbridge regarded them as disabled and therefore illegally discriminated against them. Citing Sutton, the district court granted summary judgment to defendant on the ground that to prevail under the "regarded as" prong the employer must have not only subjectively believed that the employees had a disability but also "regard[ed] the employee as disabled as defined" under the ADA. The court ruled that Woodbridge believed that the applicants' predisposition to CTS, although not definitively evidenced by the neurometry screening, rendered them unqualified only for the specific factory positions. Under these circumstances, the court held that

244. Id. at 1133.
245. Id. at 1134-35.
246. Id.
247. Id. at 1135.
248. Id.
249. Id. at 1133.
250. Id. at 1136.
251. Id. at 1137.
Woodbridge could not have regarded the nineteen applicants as disabled in the general sense.252

Thus, whether Terri Sergeant—or any other claimant under the ADA’s “regarded as” prong—can establish that her employer regarded her as disabled and fired her for this reason is unclear. (To date, the EEOC has invited the parties to arbitrate their claims.)253

The circular nature of her dilemma, however, is clear. Positive genetic testing permits Sergeant to take preventive measures against the substantial limitations of major life activities that could occur as a result of her genetic condition. The success of these measures may have left her unprotected against losing her job, however. Ironically, people may have to forgo the medical benefits genetic information can bring if they are to be protected by the ADA from discrimination based on that information. This catch-22 situation, which so adversely affects asymptomatic and presymptomatic individuals such as Sergeant, is not addressed by either existing or proposed statutory provisions.

E. Putative Federal Protection

A bill intended to address genetic discrimination independently of the ADA, House Bill 602, is currently pending before Congress.254 Cosponsored by Representative Louise Slaughter (a microbiologist),255 the Genetic Nondiscrimination in Health Insurance and Employment Act256 would, in pertinent part, prohibit employment discrimination in hiring and terms of employment on the basis of genetic information.257

The proposed legislation addresses predictive genetic information, acquired from the analysis of human DNA, RNA, chromosomes, proteins, and certain metabolites in order to detect genotypes,

252. Id.

255. Representative Slaughter has commented that “every single human being is born with genetic flaws. As a result, we are potentially uninsurable and potentially unemployable.” Subcomm. on Commerce Hearing, supra note 254, at 8.

257. § 202.
mutations, or chromosomal anomalies or from information about genetic test results or occurrences of genetic disease in family members.258 It excludes data about any other aspect of an individual's health and thus does not cover information about individuals who are symptomatic.259 This legislative approach focuses on the special nature of genetic information and invokes the theory of "genetic exceptionalism."260

Under the terms of House Bill 602, employers may not use predictive genetic information or information about requests for genetic testing or counseling to fail to hire, discharge, discriminate in working conditions or compensation, or segregate or limit employees in disadvantageous ways.261 Nor may employment agencies, labor unions, or training programs treat anyone unfavorably on the basis of predictive genetic information.262 Employers may collect predictive genetic information about employees only within the strictures of narrow programs for monitoring toxic substance risks and only with the employee's consent.263 Similarly, any information acquired through such programs may be disclosed only with the employee's consent or for certain federally approved purposes.264

Senate Majority Leader Tom Daschle promised early action on the bill,265 which has more than 250 bipartisan cosponsors and the President's promised support.266 Whether the measure will pass and, in the end, prove effective remains unclear. House Republicans have declined to hold hearings on earlier versions of this proposed bill for the previous five years,267 insisting even on the day after the human genome code's mapping was announced that there had "been no incidence of genetic discrimination that anyone can point to at this period of time."268

258 § 201.
259 Id.
260 See Suter, supra note 25, at 671.
261 See § 202.
262 §§ 203-05.
263 § 202.
264 § 206.
265 See Dave Boyer & Audrey Hudson, Lieberman Assumes Bush Watchdog Post Promises Oversight of Energy Policy, WASH. TIMES (D.C.), June 8, 2001, at A1. "It's time for our laws to catch up with our science. We can't take one step forward in science, but two steps backwards in civil rights." Id.

266 See Ed Timms, 'Genetic Discrimination' Condemned: Bush, Lawmakers Favor Protection in Employment, Health Insurance, DALLAS MORNING NEWS, June 24, 2001, at 4A.

267 The current sponsor has lamented that "we have had so much trouble getting hearings on this." Sanger, supra note 50.

268 Genetic Data: Genetic Privacy Laws Unlikely This Year, AMERICAN HEALTH LINE, June 28, 2000, available at http://www.americanhealthline.com.
Some participants in the debate about genetic discrimination have questioned the need for new federal legislation. For example, Senator Jim Jeffords has suggested that the ADA may offer adequate protection against genetic discrimination. We do not enter this debate directly here, except to note that new federal legislation would face difficulties of interpretation and application similar to those the ADA has encountered.

There is, first, a question about how efficaciously federal antidiscrimination regulations can constrain states from discriminating against prospective and present employees on the basis of predictive genetic information. The Supreme Court has struck down the application of certain provisions of both the ADA (in Board of Trustees v. Garrett) and the Age Discrimination in Employment Act (in Kimel v. Florida Board of Regents) to states in view of their Eleventh Amendment immunity. In both these cases, the Court declared that Congress did not have sufficient evidence of pervasive historical discrimination on the proscribed basis by the states, which is the sole condition under which a civil rights approach can constrain state sovereignty. There is less historical evidence, not more, that states have discriminated on the basis of predictive genetic information.

Second, there is the matter of workers' ability to carry out the essential functions of the job. Employers often claim to be protecting workers who are at higher than usual risk of workplace-induced illnesses or injuries by excluding them from jobs that may harm them. Are workers who are regarded as needing such protection unable to execute functions essential to the job because proximity to necessary work is a personal hazard? If so, should employers be required to continue their employment?

Third, will it be effective to forbid employers to be influenced by protected genetic information when making employment decisions?

269. See Discrimination: Jeffords Examining Need for Legislation on Genetic Discrimination; Coalitions Forming, supra note 133.
272. Id. at 66.
273. See id. at 90-91; Garrett, 531 U.S. at 374.
274. The sterilization of individuals with certain kinds of biological and behavioral characteristics could be cited as an early form of genetic discrimination. See David Pfeiffer, Eugenics and Disability Discrimination, 9 DISABILITY SOCY 481 (1994); Burgdorf & Burgdorf, supra note 147. However, this evidence, cited in congressional hearings during the debate on the ADA and in briefs filed in Garrett, was deemed insufficient proof of historical discrimination by states despite Justice Breyer's vociferous dissent. Garrett, 531 U.S. at 369-70.
275. See supra notes 185-86 and accompanying text.
We believe it will not. The legislation's protection does not extend to important kinds of information. Terri Sergeant's case illustrates the problem. Sergeant's employer could have gained knowledge about her genetic condition from several sources, not all of which qualify as protected under House Bill 602. Data pointing to Sergeant's condition included the history of her sibling's illness and death, medical appointments to treat chronic respiratory problems that Sergeant attributed to an allergy, positive genetic test results for Alpha-1 antitrypsin, and medical records and bills for $45,000 annually for preventive treatment. House Bill 602 would prohibit Sergeant's employer from basing an employment decision on the first and third items on this list, but not on the second and fourth. Indeed, all the information the employer needs to identify her genetic condition is manifested in the record of her prophylactic treatment. An Internet search will quickly identify the conditions for which the treatment is prescribed. Granted, knowing her family history might also offer a clue, but the employee would have difficulty establishing that this protected information was crucial.

Thus, the ban on using predictive genetic information does not protect against unfavorable personnel actions that are prompted by beliefs about employees' dispositions to genetic illness. One of the main benefits an individual obtains from predictive genetic information about herself is the foreknowledge to take preventive or mitigating measures. Information that the employee is taking such measures is not protected. An employer concerned with eliminating workers with genetic susceptibility to asbestosis or mesothelioma from contact with asbestos fibers could identify behaviors that frequently occur when individuals learn of their susceptibility: ceasing to smoke, meticulous use of masks, and so on. On the basis of this information, which would not be protected under the provisions of House Bill 602, the employer could take action. Here the employer could claim to be responding to the threat the workplace poses to the worker and, in fact, could claim that relieving the employee of her assignment

276. See Alpha-1, supra note 159.
278. Tamoxifen, for instance, is quickly identified as a medication used to reduce the incidence of breast cancer simply by typing the name of the drug into any major Internet search engine.
279. See supra Part I.B.
safeguards a worker who already has signaled her desire not to become ill.

Analysis of Terri Sergeant's claim raises another difficult question common to genetic antidiscrimination law, regardless of whether the law is provided by the ADA or specialized legislation. This is the problem of determining who will be protected and who will not, when no bright line separates vulnerable from safe and deserving from undeserving populations.

In an attempt to limit the population protected by the ADA, courts have constructed a high threshold for protection under the "disabled" prong, while there currently is uncertainty and a lack of clarity about who is eligible for protection under the "regarded as" prong. A similar problem would occur for individuals seeking protection under the provisions of House Bill 602. Whether an individual is presymptomatic or symptomatic often is not very clear. For example, a person who finds herself under stress and forgetting things might describe these circumstances to a physician. (Forgetting things is not a strict indicator of Alzheimer's disease, as demonstrated by the young parents who lock their cars on sweltering summer days, forgetting that their infants are inside.) Knowing that this patient's family has a history of early onset Alzheimer's disease, the physician orders genetic testing, which gives a positive result for a gene associated with Alzheimer's disease. An examination of the patient's cognitive functioning, with attention to the cognitive deficits diagnostic of Alzheimer's disease, is inconclusive. Although no diagnosis of Alzheimer's disease can be made on the existing evidence, the physician starts the patient on Aricept as a prophylactic to delay cognitive impairment just in case the patient's memory problems signal the development of Alzheimer's. In this case, an employer who regards the employee as likely to develop Alzheimer's could claim to have based personnel decisions on inferences made from the unprotected parts of the medical record (the patient's report of memory problems and the prescription for Aricept) but not from the protected parts (the genetic testing and family history). As the Sergeant case and this case both show, prescribing medication to ward

280. See Travis, Leveling the Playing Field, supra note 217.

off onset of disease in individuals whom genetic tests show to be at risk may be as revealing as the test results themselves.

Individuals claiming harm from genetic discrimination may have to establish that the harm occurred prior to any sign of their condition and indeed, prior to the employer's imagining such a sign. With respect to relief under the ADA, questions about the extent of plaintiffs' overall limitations often seem to preempt questions about plaintiffs' competence to perform the requirements of the job. Similarly, questions about whether an employer's decision was influenced by unprotected parts of the medical record, rather than by the results of genetic tests or family history, may preempt questions about whether a genetic condition makes an employee unable to perform the requirements of the job. Because prophylactic prescriptions are separate from the protected record, individuals who use genetic information to pursue preventive measures to benefit their health may, in doing so, lose their legal recourse against genetic discrimination. Thus, the purpose of genetic antidiscrimination law, namely, to free citizens to improve their health through applications of genomic knowledge, may not be realized.

IV. DECIDING WHO SHOULD BE PROTECTED

The ADA, as well as current and proposed genetic discrimination laws, bifurcates the population into protected and unprotected groups. Both approaches leave the large group of presymptomatic individuals who take steps to delay potential genetic disease unprotected from discrimination. Excluding this latter category of individuals from social opportunities is unjustifiable on probabilistic grounds and enormously costly to society. To ensure that this group of individuals receives equality of opportunity, we advocate their inclusion in the classification of the population safeguarded from genetic discrimination, along the lines of protection extended to race and sex. Last, we discuss what such paradigm-shifting legislation would entail.

A. Bifurcating the Population

No matter what their race and sex, regardless of whether they are identified with a dominant or a minority group, all citizens may, in principle, seek recourse through the law if they are harmed by race or
sex discrimination. In contrast, courts have seen federal legislation that protects against disability discrimination as bifurcating the population. Many state statutes that protect against genetic discrimination, as well as prospective federal legislation to protect against genetic discrimination, invite the same interpretation. Each might be understood to create two classes, one that benefits from the law's protection and one that is bereft of it.

The ADA has been read as extending civil rights protection to individuals whose physical or mental impairments substantially limit their participation in major life activities, or who are so regarded, but giving no protection to individuals who can adapt to or mitigate their impairments sufficiently to engage substantially in such activities. On the other hand, proposed specialized legislation that targets genetic discrimination will protect individuals until they evidence limitation of life activities or some other readily observable sign of their propensity for, or manifestation of, genetic disease. The protected population is thus almost a reverse mirror image of the population protected by the ADA, but once again, individuals who take mitigating measures are unprotected.

Ironically, neither the disability discrimination approach nor the attempt to provide separate protection from genetic discrimination shields people who take mitigating measures to escape dysfunction. Further, the lines drawn between protected and unprotected groups do not reflect the difference between people who can and cannot function successfully. Thus, the ADA fails to protect a significant group of people who have impairments but nevertheless can do the job. For example, in Kirkingburg, the Supreme Court ruled that an individual, fired as a truck driver because he was blind in one eye, was not protected under the ADA. Kirkingburg's brain forfeited his ADA protection when, in a process still not understood by cognitive science, it enabled him to judge depth accurately with only one eye.

283. See supra Part III.D.
284. Id.
285. See supra note 217.
287. See National Human Genome Research Institute, supra note 277.
288. See id.
289. See id.
291. Id. at 565. Depth perception usually is binocular, but some individuals apparently adapt to being monocular by correlating visual cues of light and darkness, and perspectives created by tiny head movements, so as to make accurate visual judgments about depth. See Wolfgang
bottom line here is that, although Kirkingburg's monocular performance satisfied the standards set for binocular individuals, the Court's reading of the law denied him the opportunity binocular people enjoy and, in doing so, decreased his scope of productivity. Analogously, an individual who, on the basis of a positive genetic test result, takes measures to block a genetic condition from producing dysfunction likely forfeits protection against discrimination when he takes preventive action to preserve his productivity. Thus, existing approaches to both disability discrimination and genetic discrimination fail in large part to reduce the costs of excluding otherwise productive citizens from equal opportunity.

B. Statistical Probability and Social Cost

Some people believe that genetic discrimination accurately targets real biological inferiorities. Under this view, to which many ascribe, genetic variations are perceived as important differences that may warrant assignment to inferior social status and justify inequality of protection. Is this discrimination? And if so, who should be protected against genetic discrimination? Although everyone is equally protected against race or sex discrimination, courts have bridled at protecting everyone equally against disability discrimination. Should everyone be protected equally against genetic discrimination? Congresswoman Slaughter, the author and cosponsor of House Bill 602, has correctly remarked that everyone has some "bad genes." Nonetheless, is it justifiable—either economically or morally—to extend to everyone the protection that everyone needs?

See, e.g., RICHARD A. EPSTEIN, FORBIDDEN GROUNDS: THE CASE AGAINST EMPLOYMENT DISCRIMINATION LAWS (1992). For example, two prominent media columnists subscribe to this view. See Andrew Sullivan, Ban on Use of Genetic Data by Employers, Insurers is Irrational, SEATTLE POST-INTELLIGENCER, Aug. 6, 2000, at G-1 (decrying the analogy between genetic discrimination and racial discrimination as "bogus" and averring that "the sooner we get over our handwringing, the better"); Michael Kinsley, Genetic Correctness, WASH. POST, Apr. 18, 2000, at A29 (maintaining that divergent treatment based upon genetics is "discrimination that makes perfect sense").

Subcomm. on Commerce Hearing, supra note 254.

The question of group membership, especially as it pertains to disability, is an especially pertinent and difficult one that goes beyond the boundaries of this Article, but is one that we have begun to address elsewhere. See Anita Silvers & Michael Ashley Stein, Disability, Equal Protection, and the Supreme Court: Standing at the Crossroads of Progressive and
Excluding instances of purposeful prejudice (or "distaste"),298 discrimination may occur when a decisionmaker, lacking perfect information about the characteristics of the members of a given group, bases her assessment on inaccurate "indicators" that she believes can evaluate those individuals' present or future performance.299 Some of these assessments may be irrational.300

Genetic discrimination targets a DNA anomaly, real or imagined, and assigns individuals with that anomaly to the "abnormal" group.301 Some members of the group will eventually express symptoms of particular illnesses (with varying degrees of functional limitations), while others will not.302 As the result of genetic discrimination, however, all members of the group must accept inferior employment opportunities on the presumption that society has an acceptable interest in excluding them.303 This result transpires mainly because as a culture we do not yet understand that predictive genetic testing's usefulness as a basis for preventive health care does not make it an equally useful basis for predicting personal performance. Although reliable scientific knowledge is growing exponentially in the field of genomics, there also exists huge potential

298 The seminal writing on "distaste" is by Nobel Prize-winning economist (and journalist) GARY S. BECKER, THE ECONOMICS OF DISCRIMINATION 39-45 (2d ed. 1971).

299 For an appraisal of how this phenomenon affects the labor market participation of disabled workers, see Michael Ashley Stein, Labor Markets, Rationality, and Workers with Disabilities, 21 BERKELEY J. EMP. & LAB. L. 314 (2000). Additionally, general policy misassessments are described in Silvers & Stein, Disability, Equal Protection, and the Supreme Court: Standing at the Crossroads of Progressive and Retrogressive Logic in Constitutional Classification, supra note 297.

301 See ASSESSING GENETIC RISKS: IMPLICATIONS FOR HEALTH AND SOCIAL POLICY, supra note 35, at 59-115.

302 See infra notes 320-25 and accompanying text.

303 See EPSTEIN, supra note 293.
for erroneous predictive decisionmaking. This inaccuracy can be traced to two causes—one social, the other scientific.\(^304\)

The values of individuals who conduct genetic tests can influence their interpretation of the results.\(^305\) For example, research by Dr. Paul Billings and his colleagues indicates that people commit base-rate judgment errors in overassessing the chances of contracting illnesses produced by genetic factors relative to nongenetically induced conditions.\(^306\) Another study, this time by state insurance commissioners, found that respondents consistently ignored base-rate conditions relative to genetic manifestations.\(^307\) Statistically, students and staff at Harvard Medical School fared even worse in a study of interpretive base rates.\(^308\) When asked, """"If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of [five percent], what is the chance that a person found to have a positive result actually has the disease, assuming you know nothing about the person's symptoms or signs?"""", almost half responded ninety-five percent, with only about one-fifth answering correctly (two percent).\(^309\) If sophisticated professionals can make systematic mistakes when interpreting genetic information, then the decisions of businesses utilizing that information may not be accurate.

Furthermore, actual predictive genetic testing itself manifests a wide range of clinical utility (i.e., precision) and therefore may not be a likely indicator of productivity.\(^310\) As mentioned above,\(^311\) the accuracy with which a genetic test predicts the onset of disease depends on many factors, including variances in gene expression, a test's technical

304. Although it is not our view, some individuals claim that these errors are purposefully linked. See Ruth Hubbard & Elijah Wald, Exploding the Gene Myth: How Genetic Information is Produced and Manipulated by Scientists, Physicians, Employers, Insurance Companies, Educators and Law Enforcers (1993).

309. Id.

311. See supra Part I.A.
precision, and the stability of linkage between genetic markers and suspect genes.312 Some genetic tests suffer from a high occurrence of false positives and/or false negatives.313 Moreover, genetic recombination can interfere with the predictive value of genomics.314 Consequently, predictive genetic testing “contains a substantial component of uncertainty,” not only as to whether a given condition will express itself, but also when and how severely this expression will appear.315

In addition, the predictive value of a test depends heavily upon the nature of the disease for which it tests.316 First, only a few diseases are caused by genetic anomalies with one hundred percent expression—that is, genes whose presence invariably leads to development of the disease.317 One such example is multiple endocrine neoplasia type 2, a rare disorder resulting from mutations in the RET protooncogene that is nearly certain to develop into medullary thyroid carcinoma.318 By contrast, perhaps fifty to sixty percent of women who inherit the “defective” mutations of the BRCA1 or BRCA2 gene associated with cancer will develop breast or ovarian cancer during their lifetimes.319 Accordingly, interpreting the presence of any particular gene as meaning that an individual will categorically manifest a correlated health condition is not statistically supportable.

Second, while predictive genetic testing can be useful in identifying which individuals from the population are at increased risk, estimates of penetrance—the proportion of individuals with a particular genetic susceptibility who will in fact develop the associated condition320—vary tremendously. In circumstances involving defective BRCA1 or BRCA2 genes, penetrance estimates for breast cancer range from thirty-six to eighty-five percent and for ovarian cancer from ten

313. Id. at 1053.
314. Id. at 1054.
315. Id. at 1053.
316. Id. at 1053-54.
320. See Paolo Vineis et al., Misconceptions About the Use of Genetic Tests in Populations, 357 LANCET 709 (2001); see also Howard Hughes Medical Center, Blazing a Genetic Trail: Glossary, at http://www.hhmi.org/genetictrail/glossary/glossary.htm (last visited Sept. 4, 2002).
to forty-four percent. Thus, although the presence of particular genes may identify individuals as belonging to an increased risk group (an extremely useful category from a public health perspective), the likelihood of those genes expressing, if at all, is unclear. Thus, with few exceptions, extrapolating from the presence of given genetic anomalies to a prediction that the individual will develop the associated disabilities is not statistically provable.

Additionally, a single gene can carry many different mutations, and a disease can be associated with mutations of many genes. Over eight hundred different mutations of genes associated with cystic fibrosis have been identified. Some of these will cause the disease to manifest in varying degrees of severity, and some will have no effect at all. Furthermore, identical mutations in such genes will affect individuals from different populations to different degrees because of variations in environmental factors. A particular genetic mutation may also have effects different from the one that is being investigated. For instance, in the future, scientists could discover that having a particular breast cancer gene mutation correlates with immunity from AIDS (as sickle-cell trait correlates with heightened immunity to malaria). Thus, an employer screening for and then discriminating against individuals with a genetic predisposition to breast cancer because of the costs associated with that illness might end up excluding employees with immunity to higher-cost illnesses. To do so would not only be illogical, it would also increase individual costs.

Nevertheless, the view that not all people warrant protection appears to emerge from concern about the costs of covering everyone alike. For example, a recent article by prominent law professors Colin Diver and Jane Cohen maintains that banning genetic discrimination within the employment market would “cause significant welfare losses due to the distortion of allocative efficiency.” In sum, Diver and Cohen begin from a neoclassical model of the labor market, one that presumes that voluntary exchanges between willing and informed

322. Id.
323. See NIH-SACGT, supra note 310, at 7.
324. Id.
325. Id.
individuals are "the paradigm of efficiency-enhancing transaction." 327 Consequently, the withholding of genetic information from employers by individuals with genetic anomalies causes unjustified "significant efficiency losses." 328 This loss occurs because rendering that information exclusive to its owners prevents employers from properly assessing (and penalizing) the presumed lower productivity and higher costs associated with those conditions. 329

Diver and Cohen's assessment fails for three main reasons. The first is that they make the same presumptive errors detailed above regarding the accuracy of (and accordingly the justification for relying upon) predictive testing. 330 Their argument stands up only if genetic screening can accurately predict whether a debilitating condition will be expressed by an anomalous gene and can correctly assess whether and to what extent a given individual will be functionally impaired. As we have argued, available scientific evidence demonstrates that this level of precision has not yet been achieved. 331

Yet, even if predictive testing could make these prognostications, Diver and Cohen also err in their assertion that economic efficiency therefore mandates the allowance of genetic discrimination within the employment market. 332 Strong policy reasons, in fact, militate against such a conclusion. To begin with, everyone is vulnerable to genetic discrimination because we each have some atypical or anomalous genes that may, in the future, become suspect as new scientific knowledge expands the pool of individuals believed to be at heightened risk for genetic dysfunction. 333

Permitting the exclusion of a larger number of individuals on the basis of their genetic susceptibilities may be an exercise in rational exclusion from an individual employer's personal point of view because it reduces the chance that these individuals will manifest symptoms and require a disability-related accommodation or

327. Diver & Cohen, supra note 326, at 1460. For a critique of this model as applied to disabled workers, see Stein, supra note 299; Michael Ashley Stein, Market Failure and ADA Title I, in Americans with Disabilities: Exploring Implications of the Law for Individuals and Institutions 193 (2000).

328. Diver & Cohen, supra note 326, at 1460.
329. Id.
330. Id.
331. See supra Part III.B.

increase group-based insurance costs. Nevertheless, it is neither economically efficient nor in the interests of the general society and the collective good to keep productive individuals out of the economy and thereby require that resources be devoted to them while they themselves do not generate productive goods.

This last point can be illustrated in concrete terms. Studies show that hiring people with disabilities generally lowers taxpayers' burdens and benefits the national economy. In large part, this is due to reducing expenditures on disability-related public assistance obligations, currently estimated at $120 billion annually. Pertinently, one report estimates that for every one million disabled people employed, there would be as much as a $21.2 billion annual increase in earned income, a $2.1 billion decrease in means-tested cash income payments, a $286 million annual decrease in the use of food stamps, a $1.8 billion decrease in Supplemental Security Income payments, 284,000 fewer people using Medicaid, and 166,000 fewer people using Medicare.

Consequently, society's interests in achieving the most productive overall arrangement of its citizens overrides the individual employer's interests in reducing the risk that their particular cohorts of workers will be less net-productive. Moreover, leaving asymptomatic or presymptomatic individuals unprotected impedes the realization of the precise public health benefits and related savings in health-care costs that genomics was supposed to achieve.

334. Many of the same arguments used to be rolled out to defend excluding people of color or women from desirable workplaces. See Epstein, supra note 293; Tribe, supra note 282.

335. See, e.g., The JWOD Program: Providing Cost Savings to the Federal Government by Employing People with Disabilities (Feb. 6, 1998) (listing survey results and reporting that the federal government saved $1,963,206 over the course of the study by employing 270 people with disabilities) (on file with Iowa Law Review); Taxpayer Return Study California Department of Rehabilitation Mental Health Cooperative Programs (Oct. 1995) (finding that for every disabled person employed, California taxpayers saved an average of $629 per month in costs) (on file with Iowa Law Review).

338. See Patricia Digh, People with Disabilities Show What They Can Do, HR Mag., June 1998, at 141 (citing Rutgers University economist Douglas Kruse).

C. The Equality Model

Underlying much of the concern regarding costs voiced by commentators such as Diver and Cohen is a mistaken notion about what is required in order to guarantee individuals' equality of opportunity within the context of genetic difference.340 They are correct in their formulation of the general premise that egalitarianism "posits that every human being deserves an equal opportunity to achieve her potential or her life's goals" so that a just society is under "a moral obligation to redress barriers to equal opportunity."341 Nonetheless, when Diver and Cohen apply this notion of equality to the area of genetic discrimination, they do so incorrectly.

First, they argue that protection against genetic discrimination privileges individuals on the basis of their "brute luck" in having inherited propensities for genetic disease.342 This contention errs because it relies on the mistaken idea that to refrain from disadvantaging an individual is to privilege that individual. Incorrectly assuming that the individuals in question will be less productive, Diver and Cohen imagine that protection against genetic discrimination means that less-qualified individuals will be preferred to more qualified individuals through mechanisms of "coerced altruism."343 This assumption is misguided, however. To have the misfortune to inherit anomalous genes through no fault of one's own in no way equates with being less productive.

Second, they mistakenly reformulate their premise about equal opportunity as a principle that an individual's success in the "race of life" should not be determined by "the 'brute luck' of the natural or social lottery."344 To the contrary, most proponents of equality of opportunity do not propose to address natural differences. Instead, they seek the elimination of artificial—that is, socially imposed—barriers to the exercise of natural talents.345 Some equal opportunity theorists—for instance, the bioethicist Norman Daniels—argue that we must provide medical care to people disadvantaged by poor health,
but only in cases and to the extent that there are treatments to restore them to a physical state in which equality of opportunity becomes meaningful for them.

346 Apparently Diver and Cohen have confused equality of opportunity with a view often thought to be its strong opponent, namely, the principle adopted by welfarists that justice requires equality of outcomes, not just equality of opportunity.

347 In doing so, they also suggest that employers will be statistically correct in promoting biological species-typicality in their employees, for instance, by offering fitness and wellness programs.

348 In general, Diver and Cohen underestimate the force with which promoting species-typicality creates aversion to genetic anomaly. For example, they insist that genetic aversion does not affect "the preference function of most people."

349 Diver and Cohen make this claim primarily based upon the assumption that genetic anomalies are "hidden."

350 They therefore suppose that most people do not consider genetic anomalies in dealing with one another.

351 In doing so, they apparently overlook the fact that most genetic anomalies have observable manifestations, and that the history of eugenics programs fully demonstrates how averse society has been toward individuals believed to carry inherited anomalies.

352 A central problem for many commentators who consider the implications of genetic difference is that they label genetic differences as diseases rather than acknowledging that those differences sometimes also indicate when certain individuals may be at greater risk of disease. In so doing, they import a criterion of genetic normality which, in a thoughtful and prescient article published in 1995, Susan M. Wolf termed "Geneticism."

353 Wolf cautioned that approaches to genetic discrimination may mistakenly focus on individual acts of discrimination rather than on the practice that promotes discrimination, namely, "creating genetic categories, actively looking for any kind of information about people in order to sort them into categories according to their genetic profiles."

354 Daniels asserts this thesis in many places, including his chapter in HEALTH CARE ETHICS: AN INTRODUCTION (1987).

356 See Diver & Cohen, supra note 326, at 1477.

357 Id. at 1465.

358 Id.

359 Id.

360 Id.

361 Id.

362 For example, they ignore Justice Holmes's infamous justification of state-imposed sterilization on the ground that "[t]hree generations of imbeciles are enough." Buck v. Bell, 274 U.S. 200, 207 (1927).

into those categories, and harboring attitudes and prejudices that motivate such behavior." She believed that formal equality theory requires groups manifesting differences to be treated as if they had none of these differences. Thus, she argued, when applied to genetics, antidiscrimination policy cannot help but presume that "there is such a thing as a 'normal' genotype, and that the goal is to change the treatment of people who deviate." In reality, however, there is no natural biological underclass, for "[t]here is nothing neutral or scientifically 'real' about identifying a genetic norm" for as "no one actually possesses this fictive 'normal' genotype, it is completely unclear what it means to treat someone as if they did have it."

Wolf argued that as a society we must not be misled into thinking that a strategy that failed in regard to sex discrimination—namely, attempting to assimilate members of a subordinated group to the dominant group—will work for genetic discrimination. By reifying the properties of the dominant group into "a norm that does not exist," assimilation serves to "merely entrench genetic bias." Such an approach "instantiates a norm that does not exist" and serves to "merely entrench genetic bias." Wolf also argued that as a society we must go beyond an approach to genetics paralleling early sex antidiscrimination theory that seeks to treat members of the subordinate group (women/those with known genetic anomalies) like members of the dominant group (men/those without known genetic anomalies). We must abandon the stereotype that individuals with genetic variations are deviant, abnormal, or defective rather than simply variant. Instead, policymakers and theorists ought to learn from work done in the areas of race and sex to understand that the

354. Id. at 347.
355. Id.
356. Id. at 348.
357. Id.
358. Id. at 350.
359. Id. at 346-46.
360. Id.
361. Id.
practice of treating people differently based on their different genome type must be discontinued.363

We agree with many of Wolf's assertions and take notice of her concerns. We are, however, more cautious than she about the usefulness of jettisoning equality as a value. We do not believe that equality-based paradigms necessarily impose the characteristics of the dominant or most populous group on other groups as norms or standards. Indeed, as we shall argue, equality invites a methodology that acknowledges the differences between groups but eschews unfounded inferences based on these differences.364 In sum, we do not object as strongly as Wolf to "seeing people as their genes"365 because we think it possible for formal justice to acknowledge differences in genetic identity without using "genetic notions to privilege some individuals and subordinate others."366

Effective protection against genetic discrimination is not easy to achieve. Because protecting against genetic discrimination also requires promoting the important social and cultural change of rejecting "species-typicality," approaches to genetic discrimination that are analogous to formal equality protections against racial and sex discrimination may have limited efficacy absent a concurrent shift in attitudinal perception367 and in the legal concepts framing prevention of genetic discrimination. We now turn to this matter.

\textbf{D. Reconceptualizing the Protected Class}

Neither current protection against disability discrimination, nor current or proposed protection against genetic discrimination, adequately shields the large group of presymptomatic individuals using measures to prevent or mitigate potential genetic anomalies that may never be expressed or that, if expressed, may not manifest as functional impairments.368 Moreover, this class of people is one for

364 See infra Part IV.D.

365 Wolf, supra note 353, at 346.

366 Id.; see also Silvers, supra note 345, at 13-146.

367 Or, as Wolf puts it, "Too much discussion of genetic disadvantage proceeds as if scholars of race and gender had not spent decades critiquing and developing antidiscrimination theory." Wolf, supra note 353, at 346.

368 See supra Part III.
whom opportunity will be productive and whose productivity otherwise might be lost to the community.369

We therefore propose extending genetic discrimination protection to the general population by prohibiting discrimination towards individuals "on the basis of their genetic identity." Such a proscription, with language borrowed from Title VII of the Civil Rights Act of 1964370—the central protection against race or sex discrimination371—would tailor genetic antidiscrimination protection to those instances when employers utilize genetic information as the grounds for inequitably reducing opportunities because of stereotypic beliefs about the significance of the individuals' genetic identity.

Case law applying proscriptions against discrimination on the basis of race and sex now proceeds from the initial presumption that the prevalent characteristic of all protected individuals is their competence to perform, with a subcategory of individuals within the classification who will be unable to so function.372 This initial presumption will either be borne out or disproved by empirical evidence when particular actions are challenged.373 In line with our current treatment of racial minorities and women, the burden of proof in genetic discrimination cases should shift from requiring individuals who are anomalous to demonstrate that they can be competent and productive despite being anomalous to requiring whoever would exclude them from productive opportunity based on their anomalies to prove that they are not.374

For purposes of the law, the population of the legal classification of genetically anomalous people would be characterized not in terms of stereotypes but, instead, through empirical study of the relevant biological groups. We would cease to use genetic anomalies as proxies for performance limitations. People with higher than typical risk of genetic disease as a class would be presumed to remain viable employees, even though some will not be so. Except perhaps in cases of genes with perfect (one hundred percent)
penetrance, the presumption would be that members of the class of genetically anomalous people will remain competent and productive, although a subclass will not be so, rather than that class membership means future deficiency.

Here we borrow from contemporary constructions of the legal classifications of race and sex. For example, half a century ago, equal protection did not reach women because, as a class, they were characterized as unable to defend themselves and others, even though only a subclass of women actually was too weak to do so. Today, the class of women generally is thought capable in this regard, although presumably the existence of a subclass too weak to do so remains the same. We argue that equality entails a methodological prohibition against the general characterization of members of some classifications, but not of others, in terms of the limitations of a subgroup of the classification. Thus, for instance, we think that equal protection requires that women in general not be classified as unable to defend themselves because a subclass cannot do so unless men in general also are so classified in recognition of the subclass of men who cannot defend themselves.

Broadly, constructing classifications on an equality basis means that no one may be treated with less favorable presumptions, nor bear a heavier burden of proof, by virtue of being assigned to a group that is thought to be biologically atypical. Such an equality-based approach to classification addresses Wolf’s concern that characteristics associated with one genetic class become a standard for members of other classes. According to this approach to equality, characteristics of the members of one genetic classification may not be made into a standard or norm for other classes. Consequently, on this approach no particular genetic identity is privileged.

On the whole, the law has little patience with legal classifications construed in probabilistic terms. On the other hand, the nature of genetic information is such that attributions of genetic

375. See supra notes 316-20 and accompanying text (discussing varying degrees of penetrance for diseases such as breast cancer and Huntington’s disease).

376. See Disability, Equal Protection, and the Supreme Court: Standing at the Crossroads of Progressive and Retrogressive Logic in Constitutional Classification, supra note 297.

377. See Goesart v. Cleary, 335 U.S. 464, 465 (1948) (upholding a Michigan statute that prohibited women from being licensed as bartenders except where the bars were owned by their husbands or fathers).

379. See Disability, Equal Protection, and the Supreme Court: Standing at the Crossroads of Progressive and Retrogressive Logic in Constitutional Classification, supra note 297.

380. Id.

381. Id.
identity are inescapably probabilistic.382 How, then, can legal classifications do justice to the nature of genetic identity?

Constructing the class of genetically anomalous people as we have proposed appropriately acknowledges that genomic knowledge supports judgments that are probable at best. This approach recognizes that in most cases genes associated with genetic diseases have less than one hundred percent penetrance and also that many genetic diseases are multivariant, meaning that several factors must combine to induce the onset of symptoms.383 Individuals who are at higher than species-typical risk for onset are nevertheless very often unlikely to become symptomatic.384 Further, even individuals who are symptomatic may maintain their competence and productivity, especially if mitigating measures for their disease can be found.385

It follows that there is at least one other feature our model requires. The standard of proof for excluding individuals on the basis of their genetic identities must present a reasonably high bar. Defending the exclusion of individuals on the basis of their genetic identities must be far more difficult than a mere showing that their propensity to a genetic disease is more than species-typical.

The requisite standard of proof must serve the liberty and opportunity interests of individuals and also satisfy collective social interests. The latter interests include both the reasonable desire of citizens to be self-supporting and the reasonable desire of employers to maintain productive enterprises. We propose a high standard of protection to align the law with current realities regarding genetic knowledge. With few exceptions, employers (and society at large) cannot predict accurately the effect DNA anomalies have on particular individuals.386 Placing the hurdle so high for legitimating exclusion from employment gives courts a clear standard that they can enforce when faced with the difficult issues raised by genetic discrimination.

Increasingly, medical information will have a genetic component. We do not argue for the abolition of any use of medical information in employment decisions. Instead, we take issue with the selection of proxy characteristics based upon empirically unfounded stereotypes that lead to the general exclusion of people with genetic differences regardless of competence or qualification.

382 A balanced treatment of this issue is found in Stewart J. Schwab, \textit{Is Statistical Discrimination Efficient?}, \textit{Am. Econ. Rev.}, Mar. 1986, at 228, 228-34.
383 See discussion supra Part I.A.
385 \textit{Id.}
386 See supra Part I.A.
CONCLUSION

We have argued for the creation of an equality-based protection for genetic discrimination similar to that of race and sex discrimination. We pointed out that, like race and sex, everyone is genetically anomalous in some way. That is, everyone exhibits some differences from genetic species-typicality because species-typicality is as much an idealized construction as the idea of the “average person.” We showed that, although everyone is genetically anomalous in some way, the practical and theoretical problems inherent in current approaches to statutory protection leave many people exposed to genetic discrimination. In this regard, we explained how the ADA and genetic discrimination laws both bifurcate the population into protected and unprotected groups that leave unprotected the group of presymptomatic individuals who utilize mitigating measures.

What medicine will discover about the problems attendant on each individual's genetic configuration, and which genetic configurations any employer may read as being proxies for unsuitability, is, at present, a lottery. Yet medical research learns more every day about using genetic information beneficially to prevent or delay the onset of genetic conditions that may be disadvantageous. The population of the group that can take such mitigating measures is growing rapidly.

Excluding this group from social opportunities cannot help but be enormously costly to the group's members, to society, and, as well, to our faith that science can improve our lives. To save genomics, the major scientific achievement of our era, from occasioning such lamentable outcomes, we have proposed an approach to genetic discrimination that would protect the people who have the most to lose and to gain from genomics. Finally, to indicate how implementation of our proposal can be initiated, we discussed some features of what such a paradigm-shifting approach would necessitate.