Creating an Expert System for Legislative History Research: Project CLEAR's 'Lexpert'

I. Trotter Hardy

William & Mary Law School

Copyright c 1993 by the authors. This article is brought to you by the William & Mary Law School Scholarship Repository.

http://scholarship.law.wm.edu/facpubs/1086
Creating an Expert System for Legislative History Research: Project CLEAR’s “Lexpert”*

I. T. Hardy**

Professor Hardy describes techniques that help to automate the creation of Lexpert, an expert system for giving advice about legislative history research.

Introduction

Lexpert is a software system running on IBM-compatible personal computers1 that gives advice about doing federal legislative history research. It contains information about finding the basic documents of legislative history, such as committee reports, prints, and documents; floor debates in Congress; hearing transcripts; companion bills; and the like. Based on the user’s answers to a few questions, it suggests the use of one of about thirty research aids, such as the CIS/Index to Publications of the United States Congress, the CCH Congressional Index, West’s U.S. Code Congressional and Administrative News, the GPO’s Monthly Catalog of Government Publications, and others.

In addition to suggesting a particular research aid, Lexpert also suggests which specific section of the aid would be best used. The CIS/Index to Publications of the United States Congress, for example, has a number of different access methods, including indexes or sections organized by bill title, bill number, subjects and names, public law number, CIS accession number, and so on. Lexpert is designed to identify not only a publication that will satisfy the researcher’s need, but also to name the particular section of the publication that the researcher should use.

Lexpert also offers (although it cannot automatically generate) narrative information describing each of the research aids included in the system, plus other information explaining how a researcher might use each

* © I.T. Hardy, 1993. Thanks to David Reed, Walter Echwald, Edward Richards, and David Burch for helpful comments on earlier drafts.
** Associate Professor of Law, College of William and Mary, Williamsburg, Virginia.
1. Throughout this paper, I will mention the names of several computer products. I have no affiliation with the companies that make these products, and I derive no remuneration from the mention of their products.
section of a research aid. Lexpert automatically generates certain other nonnarrative information, such as its own indexes. Lexpert is an expert system in the broad sense of that term: it contains knowledge about legislative history and can deliver that knowledge to a user in different ways, depending on the responses the user makes to the software's questions. Expert systems are conventionally thought to be constructed on a knowledge base, to which a computer program called an "inference engine" applies preestablished rules in order to make logical deductions from the knowledge.²

In contrast, Lexpert is constructed as a decision tree. The logic of the tree is predetermined when the program is created and is therefore built in to the branches of the tree. The tree itself comprises just under 200 short text files.³ Each of these files is linked to certain other files. The linking mechanism makes Lexpert a hypertext system;⁴ the particular arrangement of the links and the content of the linked files make it a decision tree.

By relying on an explicit decision tree instead of the implicit decision tree of inference-drawing expert systems, Lexpert can provide fast responses in a simple, reliable program. Because all the information is in files of text, end users can also edit or add to the system, allowing different libraries to tailor Lexpert's knowledge to their own situations.

Although Lexpert is an interesting application in its own right, the focus of this paper is on the techniques used to create the system. I have developed these techniques, in particular the use of a database system to store the knowledge and produce the necessary decision trees, during a year of sabbatical research. These techniques worked well with Lexpert and offer two benefits.

2. One short definition of "expert system" is "a computer program that relies on knowledge and reasoning to perform a difficult task usually undertaken only by a human expert." KAMRAN PARSAYE & MARK CHIGNELL, EXPERT SYSTEMS FOR EXPERTS 1 (1988). See the additional discussion of facts and rules (which correspond to "knowledge" and "reasoning") contained in id. at 35. "Reasoning" in expert systems typically means reasoning at the time a user asks questions of the system. Lexpert's decision-tree approach can be thought of as carrying out its "reasoning" at the time the system is created.

3. At this writing, the decision tree alone consists of 179 files totalling 247,900 bytes, for an average file size of 1385 bytes. The Lexpert system overall contains 663 files totalling 850,396 bytes, for an average file size of 1283 bytes.

First, the techniques allow partially automatic creation of decision-tree systems, with potential application to other areas of legal research besides legislative history. The techniques seem general enough, in fact, to apply to other areas of library research and possibly to any knowledge area for which decision trees would be useful.

Second, because a database, not a person, keeps track of the complicated network of links among the “branches” of the decision tree, the database should be capable of writing out the links in any textual format. The database technique therefore offers the possibility of generating hypertext decision-tree software for a variety of hypertext systems.

In this article, I recount earlier efforts that have led to the present work, particularly the work on an earlier hypertext decision tree for legal research called the “Paper Choice.” I describe the techniques used in the creation of the decision tree in Lexpert, first by an example involving used cars, and then with realistic examples from legislative history research. Finally, I conclude that the techniques described have practical value, both in creating a decision tree for giving advice about legal research, and in managing the many links that connect information together in a decision tree that is implemented as a form of hypertext.

Project History: The Paper Choice

My work on Lexpert continues a long-standing project called “Project CLEAR” (Computers in Legal Education: Assistance with Research). My earlier work with Project CLEAR led to the creation of a decision-tree-based software system called the Paper Choice. Briefly stated, the Paper Choice gives advice to law students about doing basic legal research. Information is available about legal digests, encyclopedias, citators, treatises, and the like. As does Lexpert, the Paper Choice tried to give specific “how-to-do-it” information, not just offer the name of a research aid.

Like Lexpert, the Paper Choice is implemented as a hypertext-based decision tree. It differs in the techniques used for its development. I created the Paper Choice decision tree manually: by thinking about the information that would be necessary to pin down a user’s research needs, and writing out that information in the form of a progressively refined tree of questions. The ad hoc nature of this process made the development of the system tedious and error-prone. Moreover, the process was complicated

by my attempt to add a large number of cross-references to additional information. These additional references took the form of additional hypertext links beyond those needed for the questions in the decision tree and were added to the system in an ad hoc way.

Those who work with hypertext agree that a lot of links to additional or collateral information can be distracting to users and may result in the sensation of being “lost in hyperspace.” Although not so widely acknowledged, at least as big a problem with hypertext is that the hypertext developer also can get lost while creating the system. A complex set of links makes for a tangled network of interconnections with a near infinite number of paths. This, in turn, makes for a system of information delivery that is almost impossible to debug: one cannot test out all possible paths a user might select in using the system.

After creating the Paper Choice, I began to consider ways that a hypertext system for legal research advice could be created more systematically and be less prone to information bugs. It seemed natural and desirable that the computer itself take on some of the task of creating and managing the hundreds and even thousands of links that a nontrivial hypertext system for legal research might exhibit.

Thanks to a generous sabbatical grant from the College of William and Mary, I was able to take the time needed to find the tools and develop the techniques for creating and managing those hypertext links.

Techniques Used to Create Lexpert

The most mechanical part of a hypertext expert system is the decision tree. A decision tree is almost entirely a hierarchical arrangement of questions. More important, a decision tree can be formed by mechanically “inverting” a straightforward list of characteristics.

For example, suppose we want to create a decision tree to help someone choose the right used car. For simplicity, suppose that only four particular used cars are under consideration: a Ford Torino, a Nissan Century, a Toyota Corolla, and a Volvo 740GL. Suppose further that the characteristics of each are as shown in table 1.

This list can be viewed as a list of possible answers and their characteristics. The answers are the names of the cars. The characteristics

6. Conklin, supra note 4, at 38. See also Martin, supra note 4, at 33.
7. The problem is hinted at in Ben Shneiderman, Reflections on Authoring, Editing, and Managing Hypertext, in THE SOCIETY OF TEXT, supra note 4, at 115, 121.
8. I was able to graft the Lexpert system onto the existing Paper Choice system to see if the two could coexist, since they are based on nearly identical hypertext technologies. Together they comprise over 900 files containing more than 3,300 individual hypertext links.
are miles per gallon, model age, likely cost, and existence of a warranty. 9

Once a list like this is created, a software program can convert it into a
decision tree. I use a simple decision tree program called “Perm,” which
stands for “permutations.” 10 This program accepts files of text in a
prescribed format as its input, and produces files of text in the form of a
decision tree as its output. The program operates by manipulating strings
of text, without regard to the meaning of those strings.

Table 1

<table>
<thead>
<tr>
<th>List of Characteristics of Four Used Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford Escort</td>
</tr>
<tr>
<td>MPG? very good</td>
</tr>
<tr>
<td>Age? 5 to 7 years old</td>
</tr>
<tr>
<td>Cost? $2000 to 2500</td>
</tr>
<tr>
<td>Warranty? no</td>
</tr>
<tr>
<td>Nissan Century</td>
</tr>
<tr>
<td>MPG? very good</td>
</tr>
<tr>
<td>Age? 3 to 5 years old</td>
</tr>
<tr>
<td>Cost? $6000 to 6500</td>
</tr>
<tr>
<td>Warranty? yes</td>
</tr>
<tr>
<td>Toyota Corolla</td>
</tr>
<tr>
<td>MPG? excellent</td>
</tr>
<tr>
<td>Age? 5 to 7 years old</td>
</tr>
<tr>
<td>Cost? $2000 to 2500</td>
</tr>
<tr>
<td>Warranty? no</td>
</tr>
<tr>
<td>Volvo 740GL</td>
</tr>
<tr>
<td>MPG? average</td>
</tr>
<tr>
<td>Age? 7 to 10 years old</td>
</tr>
<tr>
<td>Cost? $2000 to 2500</td>
</tr>
<tr>
<td>Warranty? no</td>
</tr>
</tbody>
</table>

The decision tree so produced can start, or “be rooted at,” any of the
characteristics. Let us take “Warranty” as the starting characteristic,

9. Other characteristics, such as “color” or “whitewall tires” could, of course, be used; the
only criterion for choosing which characteristics should be listed is that the characteristic should be
relevant to the choice at hand. If buyers of used cars are concerned about the length of a warranty, for
example, then a “Length of warranty” characteristic should be added to the list. If buyers do not care
about miles per gallon, then “MPG” should be removed from the list.

10. “Perm” is available from the MaxThink Company, 2490 Channing #218, Berkeley, CA
94704. See the disclaimer in note 1.
"Age" as the next, and then "Cost," and "MPG" in that order. The resulting decision tree will then begin by questioning the user about whether a warranty is desired or not; then about the "age" of the car, etc. Such a decision tree is shown in figure 1:

Fig. 1. Decision tree mechanically produced from the list of characteristics in table 1.

The first decision point leads to two branches: one for which the question of a warranty is answered "no" and one is answered "yes." This second branch, "Warranty? Yes," leads to the answer "Nissan Century." That is because only one of the four cars carries a warranty, as a glance at table 1 will show. On the other hand, if the user indicates that a warranty is not required, the branch for "Warranty? No" leads to another branch for "Age." Only one car, the Volvo, has the characteristic age "7 to 10 years old"; hence, a user who chooses that branch (the second one) will then reach the "Volvo" answer. Finally, if the user chooses an age of "5 to 7 years," two cars will have that characteristic; the decision tree therefore has one more decision branch for the miles-per-gallon question.

The resulting tree is short partly because the decision tree program eliminates needless questions, and with this trivial example many
characteristics will be thus eliminated. With longer lists, of course, fewer characteristics will likely be redundant, so that the resulting decision tree will have more branches. The point here is that computer software can automatically convert information in the form of a list of “things,” each described by a standardized list of characteristics, into a decision tree.

The text in figure 1 does not appear in the form of questions tailored for use in a decision tree. A different wording would either ask questions or make statements with which users of the system could agree or not. Figure 2 is a rewording of the tree to form statements of agreement:

```
Questions by WARRANTY

~ You do NOT care about a warranty:
    ~ A 5 to 7 year old car would be okay:
        ~ You want very good MPG performance:
            ~ Then buy the Ford Escort. <----- ANSWER
        ~ You want excellent MPG performance:
            ~ Then buy the Toyota Corolla. <--- ANSWER
    ~ A 7 to 10 year old car would be okay:
        ~ Then buy the Volvo 740GL. <-------- ANSWER
~ You DO care about a warranty:
    ~ Then buy the Nissan Century. <---------- ANSWER
```

Fig. 2. Decision tree from figure 1 reworded.

The more narrative, statement-of-agreement form shown in figure 2 can be produced either by running a text-search-and-replace program that edits the mechanically produced decision tree of figure 1, or by editing the list of characteristics in table 1 so that the resulting text directly produces the decision tree shown in figure 2.

Techniques Applied to Legal Research

The techniques just described are not specific to used cars or any other area of knowledge. They are usable whenever a decision-tree approach is
desirable for a problem that can be structured as a series of answers, each of which has certain characteristics that define the circumstances under which that answer is appropriate. For a system giving legal research advice about legislative history, it is necessary to replace the list of characteristics describing used cars with a similar list of characteristics describing the tools of legislative history research.

The advantage of starting with a list of characteristics, instead of trying first to create the decision tree, is that the list can be compiled without a great deal of expertise. Simple paper forms can be carried into the library for recording the characteristics of various research aids. As each new batch of forms is transcribed into a computer, the decision tree program can regenerate the decision tree. The system's creator need worry only about properly recording the characteristics of the research aids, not about the correct logic or order of the decision tree.

As with used cars, the choice of characteristics for a legal research aid's sections or index is a matter of judgment. I selected three principal characteristics: the range of dates the aid covers, the information a researcher must know to use a particular section of the aid, and the information a researcher must be looking for to make the section an appropriate choice.

The range of dates is an obvious and essential characteristic. If a researcher wants a committee print from 1910, it is no good looking in an index of prints that starts with 1970.

The "information a researcher must know" is another way of describing an index's access points. For example, to use an index of bill numbers, a researcher must know the number of a bill. The bill number becomes the "information a researcher must know" to use that index.

The third characteristic I chose is "the information a researcher must be looking for." This characteristic refers to the fact that each index of a research aid is useful for a different purpose. An index of bill numbers in one aid might yield the public law number of the statute that resulted from the bill. In another aid, however, an index of bill numbers might yield the name of the bill's patron in the Congress. Thus, an important characteristic in selecting both a research aid and any particular index within the aid is the information the researcher is looking for.

For the CIS/Index to the Publications of the United States Congress, I have selected for illustration four individual sections: the "Legislative Histories" section of the Abstracts volume, the "Index of Bill Numbers," the "Index of Titles," and the "Index of Subjects and Names." These four sections are useful with three different types of searches: finding the legislative history of a statute, finding the legislative history of a bill not enacted, and finding the testimony of a witness at a congressional hearing.
Table 2
List of Characteristics of Legal Research Aids Worded so that a Decision Tree Produced from the List Contains Statements of Agreement

Use the "Legislative Histories" section in the ABSTRACTS volume of the CIS Index to Publications of the U.S. Congress.

You want to find the legislative history of a statute
You know the Public Law number of the statute
The statute was enacted between 1970 and 1983

Use the "Index of Bill Numbers" in the INDEX volume of the CIS Index to Publications of the U.S. Congress.

You want to find the legislative history of a statute
You know the Bill Number of the bill that was enacted
The statute was enacted between 1970 and 1983.

Use the "Index of Titles" in the INDEX volume of the CIS Index to Publications of the U.S. Congress.

You want to find the legislative history of a statute
You know the title of the statute
The statute was enacted between 1970 and 1983

Use the "Index of Bill Numbers" in the INDEX volume of the CIS Index to Publications of the U.S. Congress.

You want to find the legislative history of a bill not enacted
You know the Bill Number of the bill
The statute was enacted between 1970 and current date

Use the "Index of Subjects and Names" in the INDEX volume of the CIS Index to Publications of the U.S. Congress.

You want to find the Testimony of a witness at a Congressional Hearing
You know the name of the witness
The statute was enacted between 1970 and current date
The list of characteristics for this example is shown in table 2. Looking ahead to the decision tree that will be produced from this list of characteristics, we would want the name of a research aid's section to become the answer to a researcher's query; the characteristics should then be worded either as questions or statements with which the researcher agrees or disagrees. In table 2, the list of characteristics are worded with the decision tree in mind.

When the decision-tree program inverts the list of characteristics in table 2 to form a decision tree,11 the resulting tree comes out as shown schematically in figure 3. With the used car example, I allowed the program to eliminate redundant branches of the tree; here, however, I have left in the redundancies so that the branches shown will correspond to the characteristics listed in table 2.

The close correspondence between table 2 and figure 3 helps show that the process of creating a decision tree from a list of characteristics is mechanical. At the same time, however, the simplicity of the example may mask all that a decision tree creating program does. For one thing, as noted, it eliminates redundant questions. In the short excerpt of figure 3, all of the date range questions are redundant because the advice given would be the same with or without a qualifying date range. If this figure were the final product and not an illustration, the unnecessary questions would have been omitted.

For another, the mechanical nature of the conversion from a list of characteristics to a decision tree ensures that repeated regenerations of the tree can be made without fear of logical errors in the tree structure. When the number of items in the list of characteristics grows, so does the complexity of the tree and the consequent benefit of automation.

Practical Problems

The mechanism just described works well in generating decision trees from short lists of characteristics that have been created "by hand," that is, in an ad hoc way. The technique begins to break down if longer lists of characteristics have to be created by hand. This problem lies not in the decision tree program,12 but rather in practicalities: with long lists of characteristics, it is difficult to ensure that all characteristics are listed.

11 The Perm program requires some additional information beyond what I have shown here. This additional information is described in note 21. Also, the program's actual output does not include the lines shown in the figure.

12 The Perm program is limited in the amount of characteristics that it can handle, but I have not yet reached that limit with 128 individual pieces of advice.
You want to find the legislative history of a statute

- You know the Public Law number of the statute
 - The statute was enacted between 1970 and 1983
 - Use the "Legislative Histories" section in the ABSTRACTS volume of the CIS Index to Publications of the U.S. Congress.
 - You know the Bill Number of the bill that was enacted
 - The statute was enacted between 1970 and 1983
 - Use the "Index of Bill Numbers" in the INDEX volume of the CIS Index to Publications of the U.S. Congress.
 - You know the title of the statute
 - The statute was enacted between 1970 and 1983
 - Use the "Index of Titles" in the INDEX volume of the CIS Index to Publications of the U.S. Congress.

You want to find the legislative history of a bill not enacted

- You know the Bill Number of the bill
 - The statute was enacted between 1970 and current date
 - Use the "Index of Bill Numbers" in the INDEX volume of the CIS Index to Publications of the U.S. Congress.

You want to find the testimony of a witness at a Congressional Hearing

- You know the name of the witness
 - The statute was enacted between 1970 and current date
 - Use the "Index of Subjects and Names" in the INDEX volume of the CIS Index to Publications of the U.S. Congress.

Fig. 3. Decision tree mechanically produced from the list of characteristics in table 2.
where they should be and not where they are inappropriate, and that all are spelled and capitalized the same. If these conditions are violated, a program like Perm that depends on comparing strings of text cannot process the list properly.

Although consistent spelling and capitalization sound like trivial requirements, they are not. The effort involved in creating a list of characteristics is large because it requires a slow buildup of answers and characteristics that constantly change. My experience was that with fifty or more answers (or "pieces of advice"), each with four or five characteristics, some mechanism to control vocabulary and spelling was essential to ensure consistency.

A Database Approach

I chose a database system to provide that control. A database can be set up so that each answer and its associated characteristics form the fields of a single record. By sorting different characteristics, one is able to spot alternative spellings or capitalizations for what should be the same word or phrase. For the Lexpert project, I chose the Borland Paradox database product because it was available on a site license at my university.

I set up a record in the database for each piece of specific advice. For example, there is a record for "Use the 'Index of Titles' from the CIS/ Index to Publications of the United States Congress." With this approach—creating one record for each section or index within an overall research aid—many records will refer to the same publication; the CIS/ Index, for example, has several sections and has changed its indexing coverage over time. Each section and change of coverage necessitates a separate record in the database.

Rather than repeat the full name of each research aid in each records, I gave every publication a code number, called a "publication number." For example, the CIS/Index to Publications of the United States Congress is assigned the number "12001," the CCH Congressional Index has the number "12003," and so on.

13. I am currently working with about 128 pieces of discrete advice or answers, each of which has eight characteristics, though at present only four of these are used to create the resulting Lexpert system.

14. See the disclaimer in note 1.

15. Like any good organizer of information, I tried at first to make the publication numbers significant. An initial "1" in a publication number meant the work dealt with federal materials, a "2" meant state materials, "3" meant local, etc. The second digit was designed to reflect the type of material covered: a "1" meant constitutional authority, "2" meant statutory or legislative authority, "3" meant case law or judicial authority, etc. In practice, my undertaking, which included local, state, and federal materials of constitutional, legislative, and judicial scope, proved far too ambitious. I scaled back to concentrate solely on federal legislative materials. Consequently, most of the publication numbers in the publications database begin with "12" for "federal legislative" materials.
Fig. 4. Relationship of the "advice" database to the "publications" database.
I then put the full name of the CIS/Index into a separate database, along with the full names of all other publications research aids referred to throughout Lexpert, arranged by publication number. The database could then maintain the relationship between the two databases by means of a common field, the publication number field.

Specifically, when the database is instructed to write out a report from the "advice" database, it can use the publication numbers listed there to pull each research aid's full name out of the publication database. I also use the latter database to store a textual description of where each research aid is located in the William and Mary Law Library. The use for this information will be described beginning on page 267.

It also turned out to be necessary to give a number to each record in the database of specific advice. Again, I used arbitrary numbers made up as I entered more and more information into the advice database; but to keep these record numbers distinct from the publication database record numbers, I preceded each advice record with the letter "R." The record numbers therefore look like this: "R1001," "R1510," etc.

Figure 4 shows the structure of the database. Note that records in the specific "advice" database have a many-to-one relationship to records in the "publications" database.

Fields in the Database

The fields in the advice database encapsulate the characteristics of date range, what a researcher must know, and what a researcher must be looking for, in order to make a specific section of a research aid appropriate for the research task. Each record in the Paradox database has a field called "DATES," showing the range of dates (as a string of text) for which the aid is appropriate.

Following the results of earlier investigations undertaken in the "Paper Choice" project, I used the term "input" to refer to what researchers must know to use a particular index. Similarly, "output" refers to whatever the index yields as the result of its use. The "advice" database therefore has fields called "INPUT" and "OUTPUT" as well as "DATES."

16. Readers familiar with database technology will recognize this arrangement as two "tables" in a "relational database system."

17. "R" was picked as an abbreviation for "record" because I initially referred to the advice database as containing "record numbers" and the publication database as containing "publication numbers." In fact, both are "record" numbers, but the initial choice of abbreviation acquired familiarity and so continued in use.

18. See Hardy, supra note 4, at 216-18.
Fig. 5. Five-record excerpt from database of specific advice.
As I collected more entries in the database, I began to see that only some of the answers related to research aids that featured legislative materials as their "output"; others featured presidential materials as their output. Of those that dealt with legislative branch materials, some were concerned with legislative history because they were indexes to hearings, debates, committee reports, and so on. But others were of a more miscellaneous nature: indexes of Senate committee members or indexes that yield as their output the address of each Representative in Congress.

I therefore began to classify each answer in terms of its general area. I termed these areas the research aid's "jurisdiction," and thus set up a field in each Paradox record called "JURISDICTION."

The resulting fields in the advice database are shown in figure 5, which contains five records as an example. The "SEC NAME" field will ultimately end up as the specific advice to be given to researchers.

Only two different "JURISDICTION" entries are shown; one for "legislative history materials:" and the other for "legislative materials." For most readers, the term "legislative materials" will not be readily distinguishable from "legislative history materials." I use the former term to characterize information that researchers would likely want to find apart from any effort to compile a legislative history. Typically, this would be the sorts of information referred to above: names and addresses of members of Congress, and so on.

As with any scheme, some cases are difficult to classify. Figure 5 shows one such case: the finding of the testimony of a witness at a hearing. I classified this research task as relating to "legislative materials," although one could consider it to relate to "legislative history materials."

The second or "publication" database contains general information about each research aid. Five records are excerpted for illustration in figure 6.

Each record in the database of specific advice (figure 5) has a field labelled "PUB_NUMBER." This number is duplicated in the database of publications (figure 6). These numbers constitute the linking mechanism that enables the database system to match a record of specific advice to its "parent" record, the record that describes the overall research aid of which the specific section is a part.

19. The terms are distinguishable by the Perm software, however, and in any event are changed in the final stages of the generation of Lexpert to terms more meaningful to researchers.
<table>
<thead>
<tr>
<th>PUB_NUMBER</th>
<th>PUB_NAME</th>
<th>PUB_DATE</th>
<th>PUBLISHER</th>
<th>WHERE_IS_IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>12001</td>
<td>CIS/Annual Index to Publications of the U.S. Congress</td>
<td>1970 to date</td>
<td>Congressional Information Service</td>
<td>First floor, microforms room; on right from lobby entrance</td>
</tr>
<tr>
<td>12002</td>
<td>U.S. Code, Congressional & Administrative News</td>
<td>1941 to date</td>
<td>West Publishing Co.</td>
<td>First floor, back row of stacks</td>
</tr>
<tr>
<td>12003</td>
<td>CCH Congressional Index</td>
<td>1937 to date</td>
<td>Commerce Clearing House (CCH)</td>
<td>First floor, Reference Room; left row of stacks toward the back</td>
</tr>
<tr>
<td>12004</td>
<td>CIS U.S. Serial Set Index</td>
<td>1889 - 1969</td>
<td>Congressional Information Service</td>
<td>Swem library -- ask at the Reference desk</td>
</tr>
<tr>
<td>12010</td>
<td>Digest of Public General Bills and Resolutions</td>
<td>1936 - date</td>
<td></td>
<td>First floor, Reference Room, left row of stacks toward the back</td>
</tr>
</tbody>
</table>

Fig. 6. Five-record excerpt from the publication database.
Reports to Disk Create the Necessary Files

Once the records are entered into the two databases, the database can be instructed to write out "reports" to disk in a form usable by the decision-tree-creating program. The first report is simply the list of characteristics: the "answers" and the circumstances under which those answers are appropriate.

A schematic representation of the template to or outline for this report is shown in figure 7. Literals are shown in roman type; variable data, filled in from the various records' fields when the report is created, are shown as field names in square brackets in italics:

```
ANSWER: Use the [Pub_tabl->PUB_NAME]. You want this section: [SEC_NAME]. For more information, see <mor[REC_NUMBER]>.
INPU: [INPUT]  
OUTP: [OUTPUT]  
JURI: [JURISDICTION]  
DATE: [DATES]
```

Fig. 7. Report template for Paradox to produce a list of characteristics.

Notice the line "For more information see <mor[REC-NUMBER]>.

The expression in <angle brackets> will become a link to a file name in the final, decision-tree form of the Lexpert system. The use of these angle brackets will be more fully described on page 260. The use of this particular file name "mor..." is explained on page 264.

The expression "[Pub_tabl->PUB_NAME]" is the Paradox database syntax to indicate that the field to fill in on the report is called "PUB_NAME" and that it resides in a separate database, called "Pub_tabl." As noted, the field called "PUB_NUMBER" has been elsewhere specified as the link between the two databases.

For convenience in manipulating the report resulting from the template, each line in the template is prefaced with an abbreviated description of the contents of the line; these descriptions ("INPU:.

20. A "template" is a description of the content of a report, written in a form prescribed by a particular database system. The system uses the template to determine where to put information from the database onto the report.
“OUTP:”, etc.) are nearly identical to the database field names, though that is simply a convenience. These abbreviations will be used later by a word processing macro to help determine formatting, then deleted.

When the database generates the report described by this template, it looks as shown in figure 8 (limited here to an excerpt of five records). Note that this list of characteristics will serve the same function as the list of used car characteristics shown in table 1.

When the decision-tree-creating program reads the information shown in figure 8, plus some other necessary information, it produces the file shown in figure 9.

Recall that whenever any questions would be redundant, the decision-tree program automatically eliminates them. As has often been the case with these short examples, several questions are unnecessary; here I have chosen to let the program omit them. Again, I have added lines to the figure to emphasize the branching nature of the tree; the actual disk file contains indenting to represent the levels of branching in the tree.

The military-style numbering in italics is not part of the program’s output and does not appear in Lexpert itself; rather I have added it here as a reference for the reader to use in comparisons with figures 10 through 13.

File Splitting and Linking

What remains is some mechanism for reading and presenting the decision tree to end users. Many outline (or “idea”) processors can read the indented file format that the decision tree program produces and present the questions in the appropriate order, but for distribution to end users, it is not suitable to require the purchase of an entire outlining program. 22

21. To make use of this list of characteristics, the decision tree-creating program has to have a separate file of “category descriptions” that tell it what the significance is of a line like “JUR: Legislative materials.” It is possible, of course, for a program like Perm to read the expressions “ANSWER:”, “INPU:”, “OUTP:”, etc., and treat those prefixes as field or category names. That would avoid the need to create a separate file of category descriptions. Unfortunately, Perm is a commercial program that users are unable to modify, and it is programmed to require a separate file. This file lists each category of information with an arbitrary label, followed by all unique entries under that category.

Like the list of characteristics file in figure 8, this file is itself produced automatically from the database. Unlike the other reports, the task cannot be accomplished with a single template; a separate template for each field is necessary. (At least, I found it to be necessary. Readers more knowledgeable about Paradox than I could, perhaps, find a way to do it better.) All four reports are written to disk as plain ASCII files, however, so that it was a simple matter to create a DOS batch file that copies each of these four separate files onto a single category description file.

The Perm program needs one other file: a list of which questions should be asked first in the decision tree. This file can contain more than one sequence of questions, so that multiple decision trees can be created.

22. Outlining programs are roughly comparable in cost and nearly so in complexity to word-processing programs. Requiring users to buy one to read a decision tree would be like requiring them to buy a word-processing program just to read a text file.
Fig. 8. Five-record list of characteristics from the database report created from the template in figure 7.
Fig. 9. Decision tree produced from the file shown in fig. 8.
One method for making a distributable version of the decision tree is to use a “file splitting” program to break the tree into small text files, and a corresponding program designed to read and jump among the files in response to a user’s choices. Both a file splitting program and a file reading program are available from the author of the decision-tree program for just this purpose."

The “splitter” program produces plain ASCII text files, one file for each set of decision tree branches that grow at the same level from a common node. The hypertext links among these files take the form of file names surrounded by angle brackets like <this>. By default, each file is created with a title line that is the line of the previous file from which this file represents a descendent, that is, a “linked-to” topic.

Figures 10 through 13 show the first four such files, produced mechanically from the decision tree file shown in figure 9. These files are “linked” together by virtue of the file names in angle brackets.

<table>
<thead>
<tr>
<th>First decision tree:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. JURI: Legislative history materials <TREE02></td>
</tr>
<tr>
<td>2. JURI: Legislative materials <TREE08></td>
</tr>
</tbody>
</table>

Fig. 10. File "TREE001" before editing.

The “linking” means that with a single key press, a file named in angle brackets can be brought to the computer screen, then another, then another, etc. With a different key press, these files can be viewed in reverse order: first the file that was viewed just previous to the current one, then the file just previous to that one, then the one previous to that one, etc. This is standard hypertext technology applied to the execution of decision trees.

In the files shown in figures 10 through 13, for example, readers can follow one particular chain of links to its conclusion. I have added italicized military numbering once again so that readers can determine from

where in the single decision tree file of figure 9 each of the "split out" files of figures 10 through 13 has come.

1. JURI: Legislative history materials

1.1 OUTP: Legislative history of a statute <TREE03>
1.2 OUTP: Legislative history of a bill not enacted <TREE07>

Fig. 11. File "TREE002" before editing.

For illustration, only the link that appears first in each file is shown here. The first file is "TREE001" (figure 10), and the first link in that file is to <TREE002>. File "TREE002" is shown in figure 11.

The first link contained in file "TREE002" is to another file named "TREE003," shown in figure 12. Compare the numbering in each figure to keep track.

1.1 OUTP: Legislative history of a statute

1.1.1 INPU: the Public Law number of the statute <TREE04>
1.1.2 INPU: the Bill Number of the bill that was enacted <TREE05>
1.1.3 INPU: the title of the statute <TREE06>

Fig. 12. File "TREE003" before editing.

The first link in "TREE003" (figure 12) is to a file named "TREE004," shown in figure 13. "TREE004" contains the answer to the research query. Had links been followed other than the first in each file, a different set of files would have been brought to the screen. This would represent a different path through the decision tree or a different set of responses from the user, and, hence, the description of a different research problem. The result, of course, would have been a different answer.
1.1.1 INPU: the Public Law number of the statute

1.1.1.1 ANSWER: Use the CIS/Annual Index to Publications of the U.S. Congress. You want this section: "Legislative Histories," ABSTRACTS volume. For more information, see <morR1001>.

Fig. 13. File "TREE004" before editing.

This set of files, produced from the database with essentially no human intervention, can be read by the hypertext reading program and used to answer research questions; it thus forms the heart of the Lexpert system. The key point here is that the complex linking of branches in the decision tree has been managed by software.

Graphic Design Touch-up with Word Processing Macros

Although the file displays shown in figures 10 through 13 are functional, they are visually unappealing. Because they all share a rigidly standard format applied by the file-splitting program, however, a text search-and-replace program can read them, one at a time, and improve their appearance.

This cosmetic surgery process can be complex, but for good appearance I wrote a word processing macro24 that finds the four-letter labels on each line, deletes them, inserts a more expanded question in place of the default heading supplied by the file-split utility, replaces the row of "equal" signs with a single line, makes lower case the file names that appear in angle brackets, and adds small "bullet" characters alongside each question. When the macro sees the four-letter abbreviations "INPU," "OUTP", etc., or the word "ANSWER," it makes the adjustments.

The word processing macro also adjusts the file's margins and spacing for a consistent and pleasing appearance when displayed. Readers unfamiliar with hypertext may not realize that successful hypertext systems require the system's author to pay a great deal of attention to graphic design (text layout, spacing, margins, and so on).25 A tremendous

24. The macro program is written for Microsoft's "WORD for DOS" word-processing program.
25. See Martin, supra note 4, at 97-98 (importance of good visual representations), 115-16 (selection of typefaces), 129-30 (use of color). Martin compares the need to present concise information in hypertext systems with an advertiser's need to present concise information to potential customers. He recommends that hypertext creators "study advertisements and how their authors use English, their headlines, their copy, their layout, and their graphics." Id. at 98.
advantage of using a system of plain ASCII text files for hypertext is that familiar tools like word processors can be used for just that purpose and can automate much of the formatting necessary.

The resulting files "TREE001," "TREE002," etc., look like the files shown in Figures 14 through 17 after the word processing macro has edited them. Compare these "after" diagrams with the "before" diagrams of figures 10 through 13.

What type of material are you researching:

- Legislative history materials <tree002>
- Legislative materials <tree008>

Fig. 14. File "TREE001" after editing.

What specifically are you looking for:

- Legislative history of a statute <tree003>
- Legislative history of a bill not enacted <tree007>

Fig. 15. File "TREE002" after editing.

What information do you have already:

- the Public Law number of the statute <tree004>
- the Bill Number of the bill that was enacted <tree005>
- the title of the statute <tree006>

Fig. 16. File "TREE003" after editing.
SHORT ANSWER—TRY THIS:

Use the CIS/Annual Index to Publications of the U.S. Congress. You want this section: "Legislative Histories," ABSTRACTS volume. For more information, see <morR1001>.

Fig. 17. File "TREE004" after editing.

The ANSWER file ("TREE006," shown in figure 17) contains a reference to "more information," followed by a link to another file, "morR1001." If that link is selected, the selection produces the file shown in figure 18, which itself was written out from the Paradox database from a report template at some other point in the process of generating the entire system.

Fig. 18. File "morR1001."

ANSWER:
Try this research aid: CIS/ANNUAL INDEX TO PUBLICATIONS OF THE U.S. CONGRESS

Turn to this particular section: LEGISLATIVE HISTORIES, ABSTRACTS VOLUME

To recap your question: <recR1001>
Is this aid available here? <wher12001>
How do you use it? <howR1001>
What is this aid generally? <wha12001>

Press CTRL+HOME to return to the beginning of Lexpert and start all over.
Additional Information Collateral to the Decision Tree

This file in turn contains yet further links to additional files, all of which can be generated at any time, before or after the decision tree has been generated. These additional links are to files that begin with "rec," "whe," "how," and "wha."

"Rec" files are "recapitulation" files; they repeat, in summary fashion, all the answers to questions a user had given that led to the final ANSWER file. For example, a user who had just received the answer shown in figure 18 must have followed a unique path through the decision tree. To quickly see that path summarized, the user can highlight the <recR1001> link and jump to the file named "recR1001." Doing so will bring up the display shown in figure 19.

The QUESTION you had asked Lexpert was:

HOW TO FIND: Legislative history of a statute
DATED: 1970 to 1983
IF YOU KNOW: the Public Law number of the statute

Lexpert suggested as its ANSWER that you could use:

RESEARCH AID: CIS/Annual Index to Publications of the U.S. Congress
SECTION: "Legislative Histories," ABSTRACTS volume

Go back now by pressing LEFT-ARROW or ESCape, and you can get further information on whether this aid is available in your library; a description of how you would use the aid to answer your particular question; and a general description of what the aid is.

Fig. 19. The recapitulation file "recR1001" for the answer given in figure 18.

26. The decision tree is created as a pure hierarchy; there is only one way to get to a particular leaf at the end of a series of tree branches.
These "rec" files are generated automatically as reports from the database. Each piece of specific advice is stored as a single record in the database. The advice is the name of a section from a publication overall. The remainder of the record associated with that advice is the collection of characteristics that define the circumstances under which the advice is appropriate: "input," "output," "jurisdiction," and "date."

These characteristics become the path that users follow through the decision tree. Because all of these characteristics are contained in a single record with a unique record number, they are "known" ahead of time by the database. It is therefore a trivial matter to set up a database report template that writes out to a disk file a report consisting of screens like that in figure 19 for each record in the database.27

Thus, the files shown in figures 18 and 19 relate to the record in the advice database that carries the record number "R1001." The file named "morR1001" in figure 18 therefore stands for "more information about record number R1001." Similarly, the file "recR1001" in figure 19 stands for "a recapitulation of the information from record number R1001." Readers can turn back to figure 5 and see record R1001; it is the first record illustrated there.

Figure 18 contains a line that says, "How do you use it?" This line ends with a link to a file named "howR1001." Again, this file can be created before or after the creation of the decision tree because its name and contents were determined as soon as record number R1001 was added to the database. Its name stands for "how to use the section and research aid identified in record number R1001." The file for "howR1001" appears in figure 20.

Because this "how-to-do-it" information is largely narrative and the Paradox database does not handle large text fields,28 I prepared the descriptions with a word processor. These descriptions are stored in separate files, one for each record, outside the database. Still, a database report template will generate all the title lines at the top, thereby ensuring accuracy and consistency from file to file.

Notice that figure 18 contains two links that do not refer to record "R1001." These are the links for "wha" and "whe," appearing in the figure as "<whe12001>" and "<wha12001>."><". These links lead to

27. The report is generated initially as a single file that contains all "rec" reports for the entire database. The Hypertext hypertext system requires, however, that each record be contained within a separate file. Thus, the actual procedure has an extra step: a small program reads this single report file and breaks it up into its constituent pieces, writing each of these to individual files. By including the record numbers in the larger report, the "splitter" program can assign file names that are keyed to the record numbers. Hence, the files are titled with "rec" plus a record number.

28. Unlike dBase and its clones, the version of Paradox I used at the time did not allow "memo" fields for text storage.
information about "where" in the library a research aid is located, and "what" in general the research aid is for.

Both of these links relate to general information about a research aid publication, not information about a specific section or index of an aid. The links are therefore keyed not to record numbers in the database of specific advice, but rather to the publications database. The file name "whe12001" stands for "Where is the research aid identified in record number 12001 of the publications database?" Similarly, the file name "wha12001" stands for "What is the research aid identified in record 12001?"

To find: Legislative history of a statute
dated: 1970 to 1983
knowing: the Public Law number of the statute
Use--> CIS/ANNUAL INDEX TO PUBLICATIONS OF THE U.S. CONGRESS
Sectn--> "Legislative Histories," ABSTRACTS volume

Find the ABSTRACT volumes that cover the year of your statute. Turn toward the back of that volume and look for a heading that says "Legislative Histories." On more recent volumes, that phrase appears as a running head at the tops of pages; on earlier volumes, you will just see a Public Law number as a running head.

Find the entry for your statute. Under the entry you will find a list of the numbers of all related Bills (that did not pass), plus Congressional Reports, Hearings, Committee prints, etc., plus citations to the Congressional Record where floor debates are recorded.

You will also find CIS "Accession Numbers" for many of these Reports, Prints, etc. (but not for the floor debates). These numbers will look like "H321-1" or "S491-12" or something similar.

In the main part of the ABSTRACTS volume, there are entries arranged by these CIS accession numbers. Look up the numbers.

There you will find an abstract of the contents of each document. If individual witnesses testified before Congress at a Hearing, their names will be listed as well.

Fig. 20. The "how-to-use-it" file "howR1001" giving information on how to use the research aid identified on the answer screen shown in fig. 18.
Readers can check the database excerpt in figure 5 to see that record number R1001 contains a "PUB_NUMBER" of 12001; that publication number cross-references a record with the same number in the publications database. The excerpt of the publications database in figure 6 shows that record number 12001 is for the CIS/Annual Index to Publications of the U.S. Congress. The last field in that record, labelled "WHERE_IS_IT," contains the information (which I added weeks earlier to the database) that the CIS/Index is located in the William and Mary Law Library on the "First floor, microforms room; on right from lobby entrance."

When the Lexpert system is generated from the database, a report template writes out a file named "wh12001" with the contents of the "WHERE_IS_IT" field. Similar files are written out for each of the other records in the publications database. File "wh12001" is shown in figure 21.

```
WHERE: CIS/Annual Index to Publications of the U.S. Congress

First floor, microforms room; on right from lobby entrance

Fig. 21. The "where" file "wh12001" giving the physical location of the research aid identified on the answer screen shown in fig. 18.
```

The last link in figure 18 tells users, who have just been advised to use a particular research aid, that they can learn "What is this aid generally?" by pursuing a link denoted "<wha12001>". Like the "how" link, this link connects the user to a file whose narrative text was "handwritten," but whose title lines were automatically generated by a report template from within the database.

Figure 22 shows the "wha" file for the answer screen shown in figure 18—that is, for the overall publication CIS/Annual Index to Publications of the U.S. Congress.

Index Files Produced from the Database

As the preceding tables and figures show, the use of a database and other tools can facilitate the creation of a decision tree for giving advice about legal research. Even those files that had to be "handwritten" gained a standard format and appearance from reports written out by the database.

The value of having the bulk of the substantive information about legal research contained within a database became increasingly apparent as the Lexpert part of project CLEAR wore on. As I originally envisioned
The Congressional Information Service (CIS) publishes a number of materials relating to the U.S. Congress. The primary ongoing index is the CIS/INDEX, which when bound is called the CIS/Annual. This publication began coverage in 1970.

The INDEX indexes Congressional Reports, Hearings, Prints, and Documents. The INDEX is accompanied by ABSTRACTS, which summarize the contents of each of the publications indexed.

From 1970 to 1983, these publications were cumulated annually into just those two volumes, the CIS/Annual:INDEX and the CIS/Annual:ABSTRACTS. In those years, the ABSTRACTS volume included a section toward the back titled "Legislative Histories," which gave the history of publications relating to bills and statutes.

Since 1984, the Legislative History section has been pulled out and separately bound in a volume titled CIS/Annual:LEGISLATIVE HISTORIES.

Fig. 22. The "what" file "wha12001" giving general information about the research aid identified on the answer screen shown in fig. 18.

Lexpert, it would lead users down the decision tree to an answer recommending a particular section of a particular research aid. Only then would the user be able to ask, "Where is that aid located in this library?"

It occurred to me much later in the project that some users might know that Lexpert could provide location information; these users might want to access the "where is it" part of the system directly. That is, they might already know that the research aid they needed was the CCH Congressional Index, but they did not know where that aid was located in the library.

Even if they knew that Lexpert held location information, they would not be able to get to it because of the way Lexpert was structured. They would have to guess which branches through the decision tree would lead them to the answer "CCH Congressional Index," and then retrieve the corresponding "where" file.

Once I identified a need for direct access to all the "where" files, I realized that the database included all the needed information and I could write it out to a disk file in the form of an index with hypertext links to all the "whe" file names. The template for such a report, associated with the publications database, was easy to create and includes specifications (1) to sort entries alphabetically, (2) to leave a space whenever the first letter of the name of a publication changes, and (3) to paginate for twenty-four lines per "page" (the number of lines that fit on a single computer screen). Simplified to its essentials, a schematic illustration of the template is shown in figure 23.
When this report is run, it produces a file that I labelled “INDWHE” for “index to the where files.” A portion of that file is shown in figure 24.

Although it is not shown in this article, I also set up a nearly identical index to the “what” files—the files giving a general description of each research aid included in the database. This took no more than a few minutes. Once both these report templates were defined, printing them out became an automatic procedure, accomplished by a number of “scripts” that can control the operation of the database.

Whenever the Lexpert decision tree is regenerated because of the addition of new information to the database, a script takes care of ensuring
that the "where" and "what" indexes are freshly and accurately regenerated as well.

Conclusion

A combination of computer software programs and techniques can help automate the process of creating an expert system for giving advice about legislative history research. Although these techniques do not produce the kind of expert system that is capable of reasoning about law and legal precedents, they do allow the creation of a helpful system, one that embodies a substantial amount of detailed knowledge about legislative history research and is capable of delivering that knowledge to its users with speed and simplicity.

The techniques for automating the creation of this type of expert system are as follows:

(1) the use of a database to store and manage a list of research aid titles and the characteristics that make them appropriate for use, and to write out "reports" to disk files that become the input files to a program that creates decision trees;
(2) the use of a decision-tree-creating program that can read the list of research aid titles and characteristics, then convert that list to a decision tree implemented as a hypertext system of linked files;
(3) the creation of the decision tree as separate text files and the ability to use ordinary word processing software to improve the format and readability of these files;
(4) the use of other database reports that become disk files to provide information collateral to the decision tree itself but "hypertext-linked" to it, such as indexes to the system's information; and
(5) the use of a simple hypertext file-reading program as the means for delivering the expert system to researchers so that they are able to obtain its advice about legislative history research.

The techniques just described have been used to create the Lexpert system for advising researchers on how to find the variety of documents that make up a federal legislative history. Equally important, these

29. See, for example, the work described in Kevin D. Ashley, Modeling Legal Argument: Reasoning with Cases and Hypotheticals (1990).

My work with Lexpert is less complex than this, coming closer to the "logic programming" work done by Kowalski and Sergot at the University of London. See Robert Kowalski & Marek Sergot, The Use of Logical Models in Legal Problem Solving, in Law, Computer Science, and Artificial Intelligence 99 (Ajit Narayanan & Mervyn Bennun eds., 1991). See especially their discussion of a "program which operates by blind, mechanical application of its rules," noting that the usefulness of such programs is precisely that "in the day-to-day practice of law, there are many situations where routine tasks do have to be performed, and where rules and regulations do have to be applied mechanically." Kowalski & Sergot, supra, at 103.
techniques also lend themselves to the development of other expert systems for giving legal research advice.

The advantages to such techniques are many. By starting with a database, an expert system developer can manage the system's information through ordinary database techniques: sorting, searching, and printing out reports. New entries can be added over time and checked for consistency with the existing entries' spelling, punctuation, etc. Whenever the developer has accumulated enough entries in the database about a new set of research aids to make it worthwhile, the database can print out the appropriate files to disk, using report templates designed and specified ahead of time. Each new round of reports is therefore produced automatically and with correct hypertext linking to other reports.

The files thus produced become both the core decision tree of the expert system, as well as its collateral information. Collateral information includes such things as files that recapitulate a researcher's request for advice; offer further instruction on what a particular research aid is for, how to use it, and where it is located in the library; and index some of the system's information. The format of these automatically produced reports can be altered at any time, with the alterations taking effect when the system is next regenerated. This allows changes to the format and content of the expert system's files to be made with certainty that all files will acquire the new format and information and, hence, have a consistent appearance.

The implications of this approach to creating expert systems in general are several.

First, useful expert systems can be created for law library research that do not depend on highly complex software to deliver the system to its end users. Most conventional expert systems rely on software to draw conclusions each time an end user asks a question. The fact that the system must draw conclusions each time makes such expert systems flexible and powerful, but also means that they are computing intensive and, hence, require more powerful computer hardware than most hypertext systems require. The software complexity in Lexpert's hypertext approach shows up only in the development cycle and even there consists in the integration of a large number of individual tools, each of which is fairly simple and understandable on its own. The particular distribution software for Lexpert is a straightforward and reliable hypertext reader program that requires minimal computing hardware.

Second, the consistency and regularity forced into the system by the database report templates offers the possibility that the information produced might be usable with a variety of hypertext programs. In particular, it appears possible to convert the large number of small linked files produced by the Lexpert techniques to run with any of several other hypertext packages besides the one actually used for the project. This
means that conversion to other hardware and software systems should be straightforward. Indeed, it may even be possible to modify the database technique to produce reports that are already in the format needed by other hypertext packages. This approach would allow the creator of an expert system to bypass the production of the small text files altogether.

The use of a database allows a developer to separate two things: (1) the collection and organization of the expert knowledge required for legal research and the production of a decision tree embodying that knowledge; and (2) the decision about what software package will deliver the system's advice to researchers. Conversion to other packages would permit the use of expert legal research advice systems on different computing hardware or with different software environments. At the very least, this flexibility should allow the decision tree to be incorporated into delivery software that can add features such as password control or greater user interaction, thereby adding greater value to libraries and researchers.

Finally, a database is useful as a general means of managing and standardizing an expert system that depends on large amounts of text about a particular area of knowledge being entered and spelled and capitalized in a consistent way. This component of the Lexpert techniques would therefore be useful for the type of expert systems that use a knowledge base and separate rules of logical inference rather than hypertext as the delivery mechanism. Insofar as these more "traditional" types of expert systems depend on stringent text management during the development process, a database much like the one described in this article could help manage that system and thus automate the process of creating both the knowledge base and the rules of inference used by such systems.