The Deficiencies of the European Union's Regulatory System Governing the Classification of Endocrine Disrupting Chemicals

Elissa Sanford
THE DEFICIENCIES OF THE EUROPEAN UNION’S REGULATORY SYSTEM GOVERNING THE CLASSIFICATION OF ENDOCRINE DISRUPTING CHEMICALS

ELISSA SANFORD*

INTRODUCTION

The European Union has issued a new regulatory scheme that proposes to identify and regulate endocrine disrupting chemicals with increased specificity.1 However, its methodology and plan to carry out the new regulations are lacking in preventative approaches and will likely result in under-inclusion of the chemicals, to the detriment of the public health.2 The United States has a similar program that is distinct in its approach to regulation of these toxins.3 Endocrine disrupting chemicals are subjected to a heightened concern based on new and recent data that shows undesirable trends, including the increase of hormone-related cancers and an increase in fertility issues.4 Other prevalent health issues

* JD Candidate, William & Mary Law School, 2020. Old Dominion University, 2016. The author would like to thank the dedicated staff of the William & Mary Environmental Law and Policy Review for their diligent work on publishing this Note.

are affected by these widespread toxins, including diabetes, bone health, and obesity. This Note argues that, while classifying these chemicals is difficult, for reasons that will be discussed, the European Union’s system would be better off incorporating a more preventative approach with different burdens of proof in order to err on the side of caution and regulate as many of these harmful substances as possible.

I. WHY ENDOCRINE DISRUPTING CHEMICALS NEED REGULATION:
INTRODUCTION TO THE ENDOCRINE SYSTEM AND ENDOCRINE DISRUPTING CHEMICALS

The human body has extensive and physiologically complex systems that govern particular functions necessary to sustain life. The endocrine system, by way of a general summary, is a delicate system that involves various glands and organs and governs hormone production. Endocrine disrupting chemicals are a certain class of diverse and widespread chemicals that are detrimental to the human body due to their effects on the endocrine system. These chemicals “act via nuclear receptors, nonnuclear steroid hormone receptors (e.g., membrane ERs), nonsteroid receptors (e.g., neurotransmitter receptors such as the serotonin receptor, dopamine receptor, norepinephrine receptor), orphan receptors . . . enzymatic pathways involved in steroid biosynthesis and/or metabolism, and numerous other mechanisms that converge upon endocrine and reproductive systems.” It is clear that these chemicals can impact the body and cause harm through a variety of pathways and physiological mechanisms. For example, the type of cellular receptor is important because the receptor type is directly linked to the kind of substance that binds to the receptor. One class of receptors, nuclear receptors, include a type of receptor

5 Endocrine Society, supra note 2, at 1.

6 Id.

8 HORMONE HEALTH NETWORK, supra note 7; What is the Endocrine System?, supra note 7.

9 HORMONE HEALTH NETWORK, supra note 7; What is the Endocrine System?, supra note 7.

11 Id.

that binds to hormones in the nucleus of a cell (intercellular) rather than being limited to the cell membrane. Certain receptors do not have a corresponding ligand and this class is called orphan receptors. Because the endocrine disruptors do not need a specific type of receptor or mechanism, but instead can affect multiple different types including intercellular and extracellular, they are particularly difficult to identify and regulate which, in turn, makes them all the more dangerous.

The endocrine disrupting chemicals are a diverse group, not just because of how diversely they can impact the body, but also because they are so prevalent. For example, these chemicals are naturally occurring but can also be synthetic, or man-made. This again lends itself to the issue of identifying the chemicals and pinpointing the harm they inflict on public health. The chemicals can alter, or disrupt, the delicate balance of the endocrine system “through environmental or inappropriate developmental exposures” and can be found in sources ranging from food to pharmaceuticals to plastics. To elaborate on the previous introductory description of the endocrine system, it is one of the human body’s main physiological systems that functions using glands that produce hormones that act as chemical messengers and internal regulators. This complex system regulates many different physiological functions like respiration, metabolism, movement, sexual development, and sensory perception. The hormones function as chemical messages and affect the different body systems by traveling through the bloodstream and sending chemical signals to the different tissues to direct them to perform various functions. The type and amount of hormone secreted by each gland can have a huge impact on the functioning of the respective tissues.

13 Id.
14 Id. at 1325, 1335–36.
17 Diamanti-Kandarakis et al., supra note 10, at 294.
18 See generally Solecki et al., supra note 16.
19 Diamanti-Kandarakis et al., supra note 10, at 294.
20 HORMONE HEALTH NETWORK, supra note 7; What is the Endocrine System?, supra note 7.
21 What is the Endocrine System?, supra note 7.
22 Id.
23 Id.
The endocrine system is constantly working to maintain a delicate balance and can be affected by many external and internal factors, including “aging, certain diseases and conditions, stress, the environment, and genetics.”24 This Note will focus mostly on the environmental factors that can impact the endocrine systems, and more specifically the exposure to toxins such as endocrine disrupting chemicals. The United States Environmental Protection Agency (“EPA”) has stated that while this class of chemicals causes effects in the wild, there is limited knowledge regarding the effects of the chemicals on humans and what level of exposure causes harm.25 This is largely due to the lack of testing done to find out the potential of this class of chemicals to harm the body.26 The EPA acknowledges that the currently employed methods are not adequate to identify the potential risks of Endocrine Disruptors.27 It is a truly strenuous task to identify what impacts the endocrine system because the physiological mechanisms that govern the system are extremely intricate and complex in addition to being incredibly sensitive to the delicate balance of internal and external conditions.28

To further emphasize why constructing a regulatory scheme of this nature is so difficult, this section will briefly discuss in greater detail how the system works and different examples of disruptors. “Endocrinology is the study of the mechanisms by which hormones coordinate and control the functions of multiple organ systems and processes”29 A key concept in the study of the endocrine system is the idea that hormones function and communicate with the body via receptors, and endocrine disruptors can impact the efficiency of those receptors.30 Sometimes the chemical disruptors even prevent hormone function entirely, but the level of disruption is hard to distinguish because the chemicals can replicate the response of the receptors.31 The hormones act with a “lock and key” mechanism that binds to receptors within a cell and once this binding occurs, the receptor can act on the instructions of the chemical message which may be an alteration of existing proteins or building new materials.32

24 HORMONE HEALTH NETWORK, supra note 7.
26 What is the Endocrine System?, supra note 7.
27 See id.; see also EDSP Overview, supra note 3.
28 See What is Endocrine Disruption?, supra note 25.
29 Zoeller et al., supra note 15, at 4099.
30 See What is Endocrine Disruption?, supra note 25.
31 Id.
32 What is the Endocrine System?, supra note 7.
chemical signals are the hypothalamus, which links the nervous system to
the endocrine system; the pituitary gland; the thyroid gland, which is
heavily involved in development and metabolism; the adrenal glands,
which produce stress hormones and others that respond to glucose metabo-
lism, blood pressure regulation, and salt levels in the body; the pancreas,
which regulates the sugar concentration in the blood; and the gonads,
which regulate reproduction and produce hormones like androgens, estro-
gens, and progestins. By way of illustrative example, the thyroid gland
makes thyroxine and triiodothyronine and these two hormones work
together to control physiological processes like growth, metabolism, and
development. Disruption of hormones and their receptors can have detri-
mental effects on the body; specific examples include the function and
development of the brain, reproductive system, and metabolic system.
Endocrine disrupting chemicals are particularly dangerous because expo-
sure is widespread and subsequent harmful effects can be delayed, making
it more difficult to find correlation between the substance and the detri-
mental results of exposure.

To qualify as an endocrine disrupting chemical, the substance must
actually physically interfere with the functioning of the endocrine sys-
tem. This physical interference usually occurs by disrupting the effec-
tiveness of hormone receptors, or influencing and even halting hormone
production. This phenomenon again implicates the issue of pinpointing
correlation, and it is for this reason that classification of the chemicals
has posed such a difficulty. There is a variety of ways a chemical can dis-
rupt the endocrine system. Sometimes the chemical mimics a hormone
that is naturally produced in the body so the body will over-respond or
under-respond. Other endocrine disruptors can influence the body to
respond to hormone production inappropriately. They can also com-
pletely block certain receptors so that the hormone does not get to trans-
mit its chemical message, and physiological processes will subsequently

33 Id.
34 Id.
35 Id.
36 Warhurst, supra note 4.
37 Robert Barouki, Endocrine Disruptors: Revisiting Concepts and Dogma in Toxicology,
38 What is Endocrine Disruption?, supra note 25.
39 Id.
40 Id.
41 Id.
42 Id.
be disrupted or prevented altogether. Other chemicals can interfere with the receptors and glands that produce the hormones where the result is an underproduction or overproduction of hormones and this interference can, and often does, result in conditions such as hypothyroidism or hyperthyroidism. Another reason the classification of these chemicals is difficult is because the harmful impact of the chemical is measured by “toxicity,” which is a fluid entity and can really only be estimated, rather than quantifiably ascertained.

For the purpose of further illustrating what an endocrine disrupting chemical is, a commonly known example is Bisphenol A, otherwise known as BPA, widely known for its use in plastic goods. These substances are commonly used in everyday life and this widespread nature is another reason why regulation is so important. Wide use of chemicals like alkylphenol ethoxylates (“APEO”) is another example of how a lack of monitoring and variety of sources contribute to harmful exposure pathways. Another example provided by the EPA is diethylstilbestrol (“DES”), which is a synthetic, or man-made, estrogen and it used to be prescribed to pregnant women to stimulate fetal development, but it was later discovered that the chemical caused damage in the children of the mothers who took the drug. The effects of the drug included adverse effects on the reproductive system and also was linked to vaginal cancer. Other chemicals that have been determined to cause adverse effects on public health include ethane and various metabolites, polychlorinated biphenyls, plant estrogen, and various organochlorine compounds.

To add even further to the difficulty posed in classification and regulation of these chemicals, it turns out that it is not just the type of chemical that causes harm that may be hard to pinpoint but also the source of the chemical. The EPA acknowledges that the chemicals may originate

43 Id.
44 See generally What is Endocrine Disruption?, supra note 25.
45 Warhurst, supra note 4.
46 See generally Angela Simonelli et al., Environmental and Occupational Exposure to Bisphenol A and Endometriosis: Urinary and Peritoneal Fluid Concentration Levels, 90 INT'L ARCHIVES OCCUPATIONAL & ENVTL. HEALTH 49, 50 (2017); Warhurst, supra note 4.
47 See Warhurst, supra note 4.
49 What is Endocrine Disruption?, supra note 25.
50 Id.
51 Id.
52 See id.
from a wide variety of sources like food, water, or the general environment. Because the sources are so unknown, and yet incredibly widespread, the effects are unpredictable and harmful. This Note argues that it is important to invest further research into identifying the link and causation of the chemicals and the impact on health, which in turn translates to stricter regulatory methodology.

II. THE EUROPEAN UNION AND THEIR CLASSIFICATION SYSTEM

The issue of causation and unknown impacts on public health is what provides the basis for concern regarding the European Union’s new regulatory scheme. In the past, the European Union has tried to implement many different regulations in an attempt to phase out endocrine disruptors from numerous sources like water, other chemicals, and products like pesticides and biocides. It is well-established that exposures to the chemicals cause an immense burden from a healthcare and disease standpoint. The new regulations have a low burden of proof, and so the standard results in what amounts to an under-inclusive classification system that could potentially cost Europe millions in repairing the damage caused by both health repercussions and economic strain between Europe and the countries it trades with, such as the United States. The United States has attempted to suggest that the European Union use a risk-based approach, much like the United States’ Endocrine Disruptor Screening Program (“EDSP”) rather than the European Union’s current hazard-based

53 Id.
54 See Diamanti-Kandarakis et al., supra note 10, at 295.
approach.60 This Note will argue in favor of the type of regulatory scheme found in the EDSP because it is a more inclusive approach and in application it will be more preventative of more chemicals, which translates into the minimization of environmental harm and danger to the public health.61 First, this Note will cover the European Union’s new classification system and their reasons for adopting it, then identify issues with the system and suggest ways to improve it based on the system used by the United States.

Since this Note will focus on the regulatory system of the European Union, it is important to note that the European Union defines endocrine disrupting chemicals as “exogenous substance[s] that cause[] adverse health effects in an intact organism, or its progeny, secondary to changes in endocrine function” and potential endocrine disrupting chemicals as “substance[s] that possess[] properties that might be expected to lead to endocrine disruption in an intact organism.”62 The World Health Organization has declared endocrine disrupting chemicals to be “a global threat.”63 Health complications as a result of these chemicals, including diagnostics and treatment, have been estimated to cost Europe over 150 billion pounds annually.64 The new regulatory scheme impacts not just Europe but the rest of the world due to implications on international trade and agriculture.65 The United States has taken measures to provide guidance and constructive criticism, discussing the impact of inadequate regulation from a public health perspective, but also from the international trade perspective where there is concern that trade could be adversely affected.66 The United States has pointed out that the key to preserving public health is identifying and controlling products that may have adverse effects on the endocrine system and emphasized that “measures must be developed in accordance with scientific principles and based on the relevant scientific evidence.”67 The United States also noted in their input to the European Union that plant protection is vital, and “[i]mposing unnecessary restrictions could have far-reaching and particularly detrimental consequences.”68

60 Id. at 3–4, 14, 16.
61 Id. at 7–9.
62 Zoeller et al., supra note 15, at 4098.
64 Id.
65 See USDA, supra note 59, at 3, 12–13.
66 Id. at 17.
67 Id. at 1.
68 Id.
For example, pesticides that are employed for plant protection function in various ways, including preventing the spread of diseases that affect the plants and diseases that could impact humans, such as diseases that originate from the pests themselves or carcinogens from other sources.69

Getting greater control on the exposure of the chemicals is very important in this context because the EU is “the fifth largest export market for U.S. agricultural products, while the United States is the largest export market for EU agricultural products.”70 This is an important consideration because the regulatory structure of the pesticides and biocides and the control and exclusion of these products will directly impact the agricultural sphere and, subsequently, the international trade between the United States and the European Union.71 In addition, pesticide regulation is critical, as well as biocide regulation, because pesticides are used to protect the public from diseases.72 These diseases can impact both the agricultural community and the subsequent products involved in international trade, and the chemicals may also have a direct adverse impact on human health in the form of human-specific diseases and carcinogens.73 The additional concern of inadequate pesticide regulation is that plants can serve as vectors, or nonhuman carriers of disease.74 As it stands, the European Food Safety Authority estimates that it could cost Europe more than ten billion euros annually to both control invasive species and remedy the damage caused.75 This cost does not even account for the cost of human disease.76 There are other economic concerns in food production; for example, certain food products may not be as available without the use of pesticides, which in turn means that the agricultural yield could be adversely affected.77 If the agricultural yield is adversely affected, it could affect the cost of the products, and subsequently, consumer welfare; plant-based dangers reach concerns regarding food sources, which have

69 Id.
70 Id. at 12.
71 USDA, supra note 59, at 3.
74 USDA, supra note 59, at 1–2.
75 Id. at 2.
76 Id.
77 Id. at 2–3.
obvious implications for public health.78 Pesticide treatments work to reduce epidemics, like the well-known Irish Potato Blight, which are a potential concern in Europe seeing as a loss of crop protection could potentially introduce diseases, and maybe even epidemics, back in to the modern world.79 In addition, the Agriculture and Horticulture Development Board has expressed their concern that “if the EU were to reject a scientific risk based approach to regulating endocrine disruptors, the cost to UK agriculture alone could exceed £905 million” and in turn could impact billions worth of imports, including United States exports.80

III. THE PROBLEM WITH THE NEW REGULATORY SYSTEM: UNDER-INCLUSION AND OVER-EXCLUSION

On April 19, 2018, the European Union launched a new regulatory scheme for the classification of endocrine disrupting chemicals.81 There were supporting documents, including a guidance document developed in part by the European Food Safety Authority and the European Chemicals Agency, and a “roadmap” was published that detailed the impact assessment of the regulations.82 Specifically, the guidance documents serve the regulatory authorities on the “implementation of the scientific criteria for the determination of endocrine-disrupting properties pursuant to [the regulations].”83 The purpose of the new criteria was to ensure a “high level of protection of both human and animal health and the environment, in particular ensuring that substances or products placed on the market have no harmful effect on human or animal health.”84 The European Union stated that the point of the new criteria is to “allow [the identification of active substances] having endocrine disrupting properties more accurately.”85 The 2018 version of the EU regulation still operates by a weight of evidence evaluation that functions by defining whether a substance has endocrine disrupting properties if: (1) there is an adverse effect in an

78 Id. at 1, 3.
79 Id. at 2–3.
80 USDA, supra note 59, at 3.
81 Commission Regulation 2018/605, supra note 1, at 33.
84 Commission Regulation 2018/605, supra note 1, at 33.
85 Id. at 34.
organism, (2) the mode of chemical action is via the endocrine system, and
(3) the adverse effect is causally related to the endocrine action. The main
issue is that the new regulations have not addressed the prior and on-
going problem with endocrine disrupting chemical classification. The
issue is that the burden of determining if a chemical is one from the class
of endocrine disrupting chemicals is the aforementioned weight of the
evidence approach. This burden of proof is too high and therefore allows
too many substances to go by unregulated. The hazard identification pro-
cess is not extensive, and the EU’s deficiencies are centered on data col-
lection, evaluation of the data, and the integration of the data in order
to assess the endocrine disrupting properties of various chemicals.

In addition to the weight of the evidence approach, the new regu-
larly scheme also employs a nontarget approach in conjunction with the
weight of the evidence standard. The nontarget approach provides that
the effects of the chemicals will be assessed in relation to organisms of
the same taxonomic phylum. This approach, when practically applied,
means the effect on nontarget organisms will not be considered unless
there is special showing that it should be assessed with consideration
given to nontarget organisms. This approach is based on the concept
that “[o]rganisms belonging to different taxonomic phyla differ biologi-
cally on essential traits, involving different endocrine modes of action.”
There is an additional caveat where if the intended endocrine method
of action produces the same effect on organisms of the same phylum as the
targeted one, such a method should not be considered when the intent is
to identify endocrine disruption as applied to organisms that belong to
a different taxonomic phylum.

Requiring a special approach to show that the chemical should
even be given further consideration for analysis beyond the threshold
consideration is a high burden and results in most chemicals not being
regulated if it cannot be shown that they will have an adverse effect on

86 Melanie Gross et al., *Weight of Evidence Approaches for the Identification of Endocrine
Disrupting Properties of Chemicals: Review and Recommendations for EU Regulatory
87 See id.
88 See id.
90 Gross et al., *supra* note 86, at 21.
92 Id. at 2.
93 See id.
94 Id.
95 Id.
nontarget organisms, even if they very well may have an adverse effect.96 The vague nontarget evidentiary approach, combined with the equally vague weight of the evidence approach provides a weak and under-inclusive regulatory scheme.97 In addition to the under-inclusivity concern, the United States also expressed an over-inclusivity concern with the hazard-based approach where “[s]taple agricultural products such as coffee, garlic, cherries, apples, and carrots contain naturally occurring endocrine active substances—and could be construed as hazards.”98 This over-inclusion is obviously a concern since these hazards are a negligible risk as they are not inherently harmful to humans unless they are consumed in massive quantities, which is unlikely.99 This is a key distinction between a risk-based approach and a hazard-based approach.100

Based on the evidentiary defects of the regulatory scheme, more research should be developed at the earlier stages to try and obtain a more comprehensive understanding of the impact of the chemicals on other organisms besides just the target species, since causation and correlation are difficult to prove.101 This is an aspect of the program that the United States noted in their commentary, stating “[t]he omission in the [program] of references to scientific evidence and the relationship of that evidence to the options is particularly striking.”102 Based on the inherent difficulty of this task, these are inappropriate standards to determine whether a chemical is harmful and should therefore be regulated. The key to maximizing protection from endocrine disrupting chemicals is to continually try to understand them and how they function, so that it will be easier to not just prevent exposure from known endocrine disruptors, but also to predict what effects other chemicals may have that are not already classified as endocrine disruptors. The weight of evidence and the target/nontarget approaches are too broad and vague, and do not invest enough exploration into determining as much as possible about the scope of the types of potentially harmful chemicals and unknown impacts on public health.103 If a chemical is suspected to be a potential endocrine disruptor, the initial response should be to attempt to determine the response with organisms, not just target organisms, but nontarget as well. The weight of evidence

96 See id. at 2.
97 See USDA, supra note 59, at 17.
98 Id. at 4.
99 Id.
100 Id. at 10.
101 Id. at 15.
102 Id. at 5.
103 USDA, supra note 59, at 5.
approach was the issue with the European Union’s former regulatory scheme and, because the new scheme still uses the same burden of proof, the underlying issue of under-inclusion and inadequate protection from the chemicals has yet to be addressed by the new classification scheme.104

Another criterium that gives cause for concern, for much the same reason, is that “presumed and suspected EDCs are excluded from the criteria,” which implicates the notion that only the “EDCs that have been proven to have adverse effects on humans” are included in the regulatory scheme.105 This standard of inclusion obviously excludes many unknown hazardous chemicals and allows for these substances to go unregulated since it limits “the scientific evidence considered.”106 Again, the result of this overly high burden of proof is that chemicals will be excluded from classification despite “the high likelihood they are harmful to human health.”107 Despite the concerns that were voiced from other countries, including the United States, during the drafting of the new regulations, the current standard for a chemical to be considered as having endocrine disrupting properties is if “it shows an adverse effect in [an intact organism . . .] which is a change in the morphology, physiology, growth, development, reproduction or life span of an organism . . . that results in an impairment of functional capacity”108 The main issue that remains unaddressed is the “adverse effect” language. This “adverse effect” language implies that the chemical in question needs to have already demonstrated harmful impacts on the endocrine system.109 The criteria does not allow for the possibility that a chemical may be harmful and so there is not any research done into potential harms, since it is just assumed that if the chemical is not known to show adverse effects then it will not be considered in the classification system.110 This system is still based on a hazard approach, rather than a risk assessment approach, where the aforementioned weight of the evidence approach is used to determine if a chemical is a hazard or not for the purposes of classification and subsequent regulation.111

Overall, the issue with the new regulation is the hazard-based approach, which utilizes the weight of the evidence approach rather than a risk assessment–based approach, and uses a lower burden of proof where

104 Id. at 15–16.
105 Alfonso, supra note 63.
106 Id.
107 Id.
108 Andersson et al., supra note 83, at 7.
109 See id.
110 See id.
111 See id.
chemicals that may have the potential to be harmful are assessed.112 These concerns are shared with other countries, including the United States, and public health organizations in Europe and across the globe.113 The United States has attempted to advise the EU that their hazard based approach would impose limitations without a solid basis of risk and would also be lacking in evaluating potential impacts on health, which includes beneficial impacts as well as adverse impacts.114 Further, the United States pointed out that the EU’s overall plan for their regulatory scheme should first identify the scientific evidence that serves as the basis for each classification and provide an explanation of the evidence and methodology.115 The United States’ report emphasizes that the EU has failed to do so, in addition to also failing to provide adequately supported impact assessments in a way that is transparent so that the public can remain informed and easily access the information.116 The risk assessment approach would likely employ more resources devoted to scientific research at the initial stages of screening the chemicals, and would therefore require a budget restructuring to account for the investment.117 This Note argues that the investment would pay off in terms of increasing the general health and well-being of the public by decreasing exposure to these toxic materials that are found everywhere and can have dramatic effects on our bodies.

IV. The United States Environmental Protection Agency’s Endocrine Disruptor Screening Program Is a Better Model for Classification and Regulation

A better example of a classification scheme for the EDC’s can be found in an EPA regulatory program, the Endocrine Disruptor Screening Program, that is “designed to screen and test chemicals for potential endocrine bioactivity, and the risk of endocrine disruption in humans and wildlife.”118 This program is designed to operate the way the critics of the

112 See id.
113 See generally USDA, supra note 59.
114 Id. at 4.
115 Id.
116 Id. at 4–6.
117 See generally Lyons, supra note 4 (providing background to the method and costs of the risk assessment approach).
EU regulations want it to work.119 The purpose of the EDSP is to allow the EPA to assess the risks associated with the chemicals and take subsequent remedial measures to address the risk.120 In 1996, the United States Congress mandated that the EPA develop the program primarily to identify pesticides that had detrimental effects.121 The Food Quality Protection Act states that the EPA needs to make safety finding of “reasonable certainty that no harm” would come from an “aggregate exposure” to the chemicals.122 The EPA regulates the chemicals utilizing a risk-based approach, and one of these methodologies is the Endocrine Disruptor Screening Program.123 The EDSP is an intensive screening process that assesses potential risks of chemicals, and uses an “Adverse Outcome Pathway (“AOP”) framework” that focuses on the toxicity pathways of potential toxins and to assess them, uses linkages of biologically likely mechanistic relationships to show biological pathways or emphasize a lack of understanding of certain pathways.124 In more concise terms, the proper regulation requires “hazard identification, hazard characterization, exposure assessment, and risk characterization.”125 This approach is based on the general distinction between the risk-based and hazard-based approaches.126 The EU’s regulatory scheme uses the first two criteria, while the U.S. regulations use all four steps of risk analysis.127 The EDSP has three stages of implementation: prioritization, screening, and testing.128 The screening process is described in further detail below, as well as deficiencies in the system.

The United States’ risk assessment approach consists of a two-tiered screening process where the first phase screens chemicals to test for potential interactions, adverse or otherwise, with the endocrine system.129 Tier 1 screening data is the threshold for determining a chemical’s

119 Id. at 16.
121 USDA, supra note 59, at 7.
122 Id.
123 Id.
124 Id. at 7–9.
125 Id at 7.
126 Lyons, supra note 4.
127 USDA, supra note 59, at 7.
128 Id. at 8–9.
129 Id. at 7–8.
potential to interact with the endocrine system. This phase requires the development of a chemical screening program where the testing used is appropriately validated and the results are meant to indicate the presence of hormonal effects. The specific systems that are examined include the thyroid, estrogen, and androgen hormone systems. If a chemical is found to show potential interaction, the chemical is moved to the second phase. The second phase consists of looking further into the interactions, determining exactly what kind of interaction occurs, and what dose or amount of the chemical constitutes the threshold amount to cause the interaction. The Tier 2 testing phase also sets out a qualitative correlation between the dose, or amount, of the chemical and the resulting adverse effect. This information is combined with information regarding exposure and this produces a risk assessment to support mitigation measures and subsequent regulatory decisions. Specifically, this information is used to assess if a certain chemical or other substance found in sources accessible to humans, like sources of drinking water, poses a risk to the environment and public health. This kind of method employs high throughput assays that allow for a variety of chemicals to be efficiently evaluated for bioactivity and biochemical interactions with the chemicals. In addition, there are advanced computational methods used to measure

132. *Id.*

133. *Id.*

134. USDA, supra note 59, at 8.

136. See generally EDSP Overview, supra note 3; *EDSP Universe of Chemicals*, supra note 135.

bioactivity. The computational modeling, combined with molecular biology, is used with in vitro methodologies that allow for detection of endocrine-specific events and pathways, an entire process that helps prioritize the information found in the Tier 1 phase of the research.

While the EDSP is a more preventative approach, it is not without its deficiencies. Firstly, the program sometimes fails to validate the Tier 1 and Tier 2 testing, which is an issue because the process of validation is what determines if the information is reliable. Secondly, some of the Tier 1 tests often result in false positives where the results say the endocrine system is impacted when it may not actually affect it at all.

However, even though the methodology is not perfect, the EPA has made efforts over the recent years to reevaluate it and now employs new computational methods to estimate the risk to humans and the environment. Specifically, “pathway frameworks may be used to evaluate the predictive performance of one or more computational models to predict downstream key events.” These computational approaches may be able to serve as an alternative to the typical Tier 1 screening approach at some point. This kind of proactive, research-heavy, and focused approach is what the current EU criteria is missing, and this kind of approach would address the widespread critique of the overly high burden of proof and over-exclusion of potential toxins while improving detection and identification of endocrine disrupting chemicals.

CONCLUSION

The endocrine system is a complex and delicate physiological network that is easily corrupted by both internal and external factors,
including toxins like endocrine disrupting chemicals which are both naturally occurring and synthetic, and can originate from a variety of sources.148 Because of the complexity of the interactions within the endocrine system, it is difficult to pinpoint exactly what chemicals harm the endocrine system, and even once a toxin is identified, it is difficult to measure the scope of the impact or confirm causation.149 There is additional complexity given that there is often a disconnect between the scientific research and methodology used in policy implementation.150

The EU’s new regulatory scheme is a hazard-based approach that does not provide enough specificity and will continue to allow too many potential toxic chemicals to go unregulated, or will over-regulate chemical sources that are not a real concern. The United States’ Endocrine Disruptor Screening Program, overseen by the EPA, is a more inclusive and preventative approach that provides for a more comprehensive level of protection and screening that utilizes the same initial approach as the EU, but adds several additional steps to further assess risk.151 The EU should incorporate aspects of this program into its own regulatory scheme, with emphasis on an elevated burden of proof, as opposed to the current “weight of the evidence” standard. The elevated burden of proof will place the focus on more preventative screening, which in turn will ensure more chemicals will be regulated and exposure to harm will be minimized. This minimization will cut the cost of medical expenses, prevent disease, preserve the agricultural markets, and will further protect the health of international trade. The EU should revise their regulatory scheme of endocrine disrupting chemicals, and look to the EPA’s Endocrine Disruptor Screening Program for guidance. A regulatory scheme for substances such as these chemicals, that are difficult to identify and trace, should have a more prevention-based focus so as to avoid any under-inclusion and overly harmful exposure.

148 For further explanation, see supra Part I.
149 Id.
151 See generally USDA, supra note 59, at 7–8 (providing additional support for why the EDSP might be more comprehensive and successful than the EU’s approach).