The Internet at 20: Evolution of a Constitution for Cyberspace

Henry H. Perritt Jr.
THE INTERNET AT 20: EVOLUTION OF A CONSTITUTION FOR CYBERSPACE

Henry H. Perritt, Jr.*

INTRODUCTION

In 1995, this Journal published my1 article arguing for broader public access to government-generated information, explaining that the Internet provided the potential for a new window into government operations and decisions.2 That article, summarized more thoroughly in Part I.C below, focused on only one aspect of the then-neophyte Internet’s capacity to revolutionize how people interact with each other, participate in democratic political systems, conduct commerce, and create and communicate art.3

The Internet is now about twenty years old—measured from the time that the federal government decided to release it from its governmental sponsorship and control in the research and national security communities and launch it into the private sector as a global information infrastructure. Some of the earliest battles over the Internet were fought over access to government information. Gradually, the battle-field broadened, encompassing a wide range of federal and state constitutional issues, federal common law, and private international law.

The same core issues and principles explored in my 1995 article, however—deferring to competitive markets and encouraging them to produce a diversity of products and services, ensuring access to the marketplace by all consumers and producers, and providing a mechanism to compensate for injury4—now frame the full range of legal and policy questions arising from the Internet’s ubiquity.

The combination of technological characteristics defining the Internet, regulatory philosophies first articulated by the Clinton administration, statutes addressing particular problems, judicial decisions, and market-driven commercial practices form

* Professor of Law and former Dean, Chicago-Kent College of Law. Member of the bar: Virginia (inactive), Pennsylvania (inactive), District of Columbia, Maryland, Illinois, Supreme Court of the United States. SB in Aeronautics and Astronautics, MIT, 1966, SM in Management, MIT Sloan School of Management, 1970, J.D., Georgetown University Law Center, 1975.

1 To date, the author has never written an article in the first person. My involvement in the development of the Internet, however, warrants use of the first person in this Article.

3 See id.

4 Id. at 183–90, 211.
the Internet’s “constitution.” As with the British Constitution, no overarching constitutional document exists; rather,

[S]afeguards of human rights and freedoms are not the rigid legalism and paper guarantees of written constitutions and Bills of Rights but the benevolent exercise of discretion by public officials, who are accountable through their political masters to the legislature and the people, accompanied by the efficiency and careful scrutiny of the legislative process.5

Further,

[T]here is no single, identifiable document that is widely accepted as a systematic statement of the basic tenets of British constitutional law.

But this is not the only possible definition of a “constitution.” ... [A] constitution [is] “the whole system of government of a country, the collection of rules which establish and regulate or govern the government.”6

The same can be said about the Internet’s constitution. It is not expressed in a single document. Instead, it comprises the open architecture inherent in the Internet’s technological protocols together with a collection of government policies, legislative enactments, and judicial decisions that seek to protect the basic architectural philosophy, ensure space for entrepreneurial freedom, and guard against the abuse of economic or political power.

This Article looks back over the Internet’s first twenty years, highlighting the crucial legal decisions by the executive, legislative, and judicial branches that have led to the Internet’s success, and that now frame its constitution. I participated in many of these decisions and wrote more than a dozen law review articles and reports suggesting directions for public policy and law. This Article uses this foundation to consider the future, focusing on major legal controversies, the resolution of which will define the Internet’s third decade—either strengthening or undermining its constitution.

I. DEVELOPING A LEGAL FRAMEWORK

During the 1990s and early 2000s, policymakers and entrepreneurs developed a “constitution” for the Internet that succeeded in balancing a number of overlapping and conflicting objectives:

- ensuring open access to the physical infrastructure;\(^7\)
- ensuring that intermediaries flourished and that content originators had free access to them;
- developing the tools for expansive e-commerce;
- developing rules for transborder jurisdiction so that the burden of enforcement did not cause intermediaries to shut out controversial content; and
- managing security, intelligence, and law enforcement goals so that people were not afraid to use the Internet.\(^8\)

Intertwined with these objectives was the need for a system to manage Internet domain names and addresses that would be broadly acceptable around the world.

A. Foundations

Work on developing legal regimes to govern the Internet began in earnest in the mid-1990s, around the time my article was published in this Journal. By then, the basic technological and policy foundation for the Internet was reasonably secure.\(^9\) Conferences had been held at Harvard University’s Kennedy School of Government in 1990, and elsewhere, on unleashing the Internet from its academic and federally subsidized origins.\(^10\) In 1994, the National Research Council published a report on the potential of what would become the Internet to support communications and information exchange activities throughout society.\(^11\) By 1995, the federal government had defunded the Internet, and handed its further development to private entities using the growing array of private networks with growing bandwidth.\(^12\)

\(^7\) The infrastructure access issue initially focused on opening up the Public Switched Telephone Network (PSTN), and later on assuring net neutrality by a handful of Internet backbone service providers and content intermediaries.

\(^8\) See, e.g., Lawrence Lessig, Code: And Other Laws of Cyberspace (1999).

\(^9\) See generally Nat’l Research Council et al., Realizing the Information Future: The Internet and Beyond (1994).

\(^12\) See Leiner, supra note 10.
The 1990 Harvard Conference addressed technological, economic, and broad public policy issues presented by the evolution of the Internet into the private sector. I was one of the few participants who focused on legal issues. My article, *Tort Liability, the First Amendment, and Equal Access to Electronic Networks*, refined some of the legal ideas I had first addressed in a paper presented at the conference. Observing that the unbundling of value at the heart of the Internet’s architecture would result in a greater diversity of products and services, narrowly focused on particular functions, and able to interconnect seamlessly with functions performed by products and services offered by others, the article articulated three goals for the legal framework for the Internet:

1. It should promote a “diversity of information products and services in a competitive marketplace; [t]his means that suppliers must have reasonable autonomy in designing their products.”
2. It should protect “users and organizers of information content” from being “foreclosed from access to markets or audiences;” and
3. It must provide compensation for injury suffered from information content when victims can prove traditional levels of fault, while shielding intermediaries from liability for content posted by others.

A small group of lawyers met monthly in Washington for a couple of years after the Harvard Conference: David Johnson, Ron Plessner, Jerry Berman, Robert Gellman, Kent Stuckey, and me. We developed ongoing relationships and conversations with other critical policy developers: Becky Burr, Mitch Kapor, Larry

15 Id. at 71.
16 Id.
17 Id.
19 Hereinafter the “Washington Group.”
20 J. Beckwith Burr, WILMER HALE, http://www.wilmerhale.com/becky_burr/ (last visited May 1, 2012). J. Beckwith (“Becky”) Burr, then an attorney-advisor at the Federal Trade Commission (FTC) and later a senior Internet policy adviser at the National Telecommunications and Information Administration (NTIA), worked with Magaziner to develop the Clinton administration’s policy for the Internet and e-commerce. *Id.* She was the Washington Group’s main liaison with the Magaziner effort. *Id.*
Lessig, and Ron Staudt. Together, we helped crystallize principles that guided the broadening public discourse over the Internet.

Meanwhile, Congress was beginning to glimpse the potential. The High-Performance Computing Act of 1991 recognized the potential for society to benefit from “rapid adoption of open network standards,” and “of an information infrastructure of data bases, services, access mechanisms, and research facilities available for use through the [Internet].” It authorized the establishment of the National Research and Education Network, with the capability of handling data at one gigabit per second, developed “by purchasing standard commercial transmission and network services from [private] vendors,” and lead to the “establishment of privately operated high-speed commercial networks.”

When the Clinton administration took office in January of 1993, it became clear to those interested in wide-area computer networking that dial-up electronic bulletin boards, e-mail, and perhaps the Internet were on the threshold of revolutionizing public access to governmental information. Vice President Gore had emerged while he was still in the Senate as an evangelist for the “Information Superhighway.” Technological visionaries were beginning to talk about the possibility of a broader “electronic commerce” revolution. Ron Plesser, a member of the Washington Group, recruited me to join the telecommunications section of the Clinton Transition

22 Larry Lessig, Short Biography, LESSIG BLOG, http://www.lessig.org/info/bio (last visited May 1, 2012). Larry Lessig, then a junior faculty member at the University of Chicago Law School, initially joined our efforts as a participant in conferences addressing Internet jurisdiction and governance. Id. He went on to become one of the most prominent and thoughtful public intellectuals addressing Internet issues, especially copyright law’s potential to do harm.

23 Faculty Biographies: Ronald W. Staudt, IIT CHICAGO-KENT COLL. OF LAW, http://www.kentlaw.edu/faculty/rstaudt/ (last visited May 1, 2012). Ron Staudt was a professor of law at Chicago-Kent College of Law and a pioneer in harnessing information technology to make legal institutions more effective. Id. As a board member of the National Center for Automated Information Research (NCAIR), he encouraged NCAIR to fund several conferences organized by the Washington Group.

26 Id. § 5502(1)(c).

27 Id. § 5512(a).

28 Id. § 5512(c)(8).

29 Id. § 5512(c)(4).

Although the nominal focus of the section was on the Federal Communications Commission (FCC), Ron and I pushed for language in our transition report addressing broader issues of networking.

It was not yet clear, however, what the administration’s philosophy should be regarding the regulatory environment for the emerging technologies. The same issues of access, intermediary liability, security for e-commerce, and standardization existed whether proprietary networks like Compuserve and America Online dominated the future or whether they were marginalized by the Internet’s open architecture.

The Office of Management and Budget and the General Services Administration commissioned me to write a “white paper” on some of the issues, focused on the ground rules for accessing government information, such as judicial decisions, statutes, and agency rules and regulations in electronic form.\(^{33}\) The issues were easier here because they did not confront private property ownership in the purely private sphere. Indeed, a federal statute—the Freedom of Information Act (FOIA)\(^{34}\)—already guaranteed access to information in paper formats. The question was how it should be extended to electronic formats. I had already done some of the early work on how to resolve this question.\(^{35}\)

My article previously published in this Journal framed the problem and possible solutions:\(^{36}\) “The article mobilize[d] the legal arguments entitling members of the public, including publishers, to access and emphasize[d] the clash of interests when a government,” tempted by new revenue possibilities, “seeks to sponsor a monopoly for access to information in electronic formats.”\(^{37}\) It analyzed FOIA and its state counterparts, which are intended to increase public access,\(^{38}\) and copyright law, which

36 Perritt, supra note 2, at 179.

37 Id.

38 Id. at 186–95.
gives the “owner” of information the power to prevent access or use.39 It considered how the First Amendment may come into play by limiting information monopolies, whether supported by copyright law or just imposed as a matter of public policy and economic interest of those already possessing the information.40 It evaluated antitrust41 and burdens on interstate commerce42 limitations on information monopolies.

During the same period, I authored ACUS Recommendation 88-10,43 which encouraged agencies to apply the FOIA to electronic formats, recommended greater use of information technology to disseminate agency information, and discouraged exclusive arrangements for disseminating public information. It supported agency experimentation with electronic means of providing public participation and rule-making, adjudication, and other administrative proceedings.44 Subsequently, I drafted a set of principles for access to federal information in electronic formats eventually adopted by the American Bar Association’s House of Delegates in August 1991,45 which shaped amendments to FOIA,46 and worked with Ron Plessner as he mediated an agreement among stakeholders on what became the Paperwork Reduction Act of 1995.47 Among other things, the Paperwork Reduction Act prohibits agencies from “establish[ing] an exclusive, restricted, or other distribution arrangement[s],”48 and assured private entrepreneurs of access to public information so that they could develop their own value-added products.

While I was working on the white paper,49 Ira Magaziner, in the White House Office, aided by Becky Burr at the National Telecommunications and Information Administration, undertook the task of developing a broader policy statement.50 Magaziner’s effort took longer than mine because it involved a much broader spectrum of interests. It produced two documents: a “Green Paper” on Internet domain

\begin{thebibliography}{999}
\bibitem{1} Id. at 197–204.
\bibitem{2} Id. at 205–10.
\bibitem{3} Id. at 211–14.
\bibitem{4} Id. at 214–17.
\bibitem{5} Recommendation of the Administrative Conference Regarding Federal Agency Use of Computers in Acquiring and Releasing Information, 1 C.F.R. § 305.88-10 (1989) [herein after ACUS Recommendation 88-10].
\bibitem{6} Id.
\bibitem{11} See supra note 33 and accompanying text.
\bibitem{12} See infra notes 51–52.
\end{thebibliography}
names, and a framework for global electronic commerce, both of which had seminal and continuing influence. The framework was analogous to the *Federalist Papers* in articulating constitutional principles for the Internet. It committed the United States government to “widespread competition and increased consumer choice” as the defining features of the new digital marketplace, “a non-regulatory, market-oriented approach to electronic commerce,” and discouraged “taxes and duties, restrictions on the type of information transmitted, control over standards development, licensing requirements and rate regulation of service providers,” likely to throttle the Internet in its adolescence.

From the earliest discussions about moving the Internet from the government-funded research and education communities to the private marketplace, it was apparent that new issues related to freedom of expression, access rights, and liability of intermediaries would arise.

B. Creative Commons Philosophy

These early principles developed for access to government information and for regulation of the Internet drew upon and reinforced the Internet’s unique technological architecture. The Internet is fundamentally different from the Public Switched Telephone Network (PSTN) and from broadcast radio and television networks. It is indifferent to the type of traffic contained in the packets that move across it. The originating computer takes a full-motion video, an e-mail message, the text of an article, or a Facebook posting, and breaks it up into packets and sends them into the Internet. Once they get into the Internet, they look like any other packets to all the

53 Id.

55 The term “creative commons” came into use later, and is generally applied to applications software and content. The term, however, embraces the foundational philosophy of the Internet.

routers. The receiving computer reassembles them into a full-motion video, a message, an article or a new Facebook item. This indifference to traffic content reflects the Internet’s four architectural principles.

1. Different layers of the Internet perform different functions. This embodies the approach of “OSI stack,” which enables each layer to pass messages to adjacent layers through a standardized, open architecture that prescribes the formats for such interlayer communication.58 This layering principle means that the Internet itself is concerned only with passing standardized packets—Internet Packets (IP)—from one edge to another. The communications lines and switches—called “routers”—in the middle of the Internet “cloud” 59 are indifferent to the content of the IP packets that traverse the cloud. This layering or building block approach means that designers of any one layer can make engineering judgments for that layer without concerning themselves with the capacity of adjacent layers to handle their traffic.60 The result is more specialized innovation and a more competitive market structure than if innovation at any one layer had to wait until all the other layers involved could be adapted.

2. Closely related to the layering principle is the Internet’s “end-to-end design principle.”61 Applications such as email processing, compression and decompression of audio or video files, reassembly of message components into the proper order, take place in applications outside, rather than inside, the cloud.62 This contrasts sharply with the design principle of the traditional circuit-switched PSTN, where most of the intelligence is inside the network and the devices beyond the edges of the network are relatively “stupid.”63 The end-to-end principle enhances competition because it leaves it to users and providers operating beyond the edge of the network to decide what applications they want to use and what innovations they want to make or commission.

3. “[T]he Internet Protocol separates the underlying network from the services that ride on top of them. IP [i]s . . . an open standard, so that anyone can use it to create new applications and new networks.”64 Thus, the Internet can be implemented on almost any kind of underlying communications channel, including dedicated telephone trunk circuits, optical fiber modulation and multiplexing protocols, microwave or other radio. The underlying communications technologies affect the bandwidth of Internet connectivity obtainable over those protocols, but otherwise the users of the

59 “The Internet is frequently represented in network diagrams as a cloud, signifying that users communicating through the Internet do not need to be concerned what is inside the cloud.” Id. at 214 n.467.
60 Id.
62 Perritt, supra note 56.
63 Id. at 215.
Internet do not need to be concerned about how the bits are actually transmitted and received through wires, optical fibers, or space.

4. The overarching rationale, a result of honoring the first three, is that no central gatekeeper controls the Internet. This governing principle allows for creativity to occur at the network edges. In such an environment, entrepreneurs with new ideas for applications do not need permission for their inventions to reach end users. Closed networks, like cable video systems, are different. There, network owners control what consumers can see and do.65

C. Ensuring Access

The need to ensure the integration of all of the Internet’s separate parts was apparent early in the Internet’s emergence.66 To do this, anyone who wanted to contribute to the communications and information infrastructure represented by the Internet must have access. Common carrier regulation was the traditional means for the law to guarantee access to communications and transportation infrastructures, but common carrier regulation was not consistent with decentralization and privatization.67

1. Telecommunications Act of 1996

The Telecommunications Act of 1996 moved public policy fundamentally away from a centralized regulated monopoly approach toward a competitive one more reliant on market forces.68 Central to its philosophy was ensuring access to the infrastructure. The Act was premised on the now-quaunt vision that the future would be dominated by video entertainment transmitted by telephone companies and telecommunications service provided by cable companies.69 The word “Internet” appears only four times in the statute,70 outside special provisions dealing with protecting children from harmful information on the Internet. At the same time, however, it fundamentally altered the industry structure by opening up competition in the

65 Id. at 2–3.
66 See generally Henry H. Perritt, Jr., Access to the National Information Infrastructure, 30 Wake Forest L. Rev. 51 (1995) (analyzing traditional legal mechanisms for assuring access to communications infrastructures and recommending a minimalist approach for law, focused on interfaces).
67 See id. at 67.
69 H.R. Rep. No. 104-204(i) at *53 (1995), reprinted in 1996 U.S.C.C.A.N. 10, 16–17 (“Telephone company entry into the delivery of video services will encourage telephone companies to modernize their communications infrastructure. Specifically, the deployment of broadband networks would be accelerated if telephone companies were permitted to offer video programming. These networks would be capable of transmitting voice, data, and video to consumers.”).
It also instructed the FCC to take action to provide incentives to deploy advanced broadband technologies.72 Pitched battles ensued before the Commission and in the courts over how competition should be assured under the Act.73

The 1996 legislation expresses a preference for facilities-based competition.74 A facilities-based competitor has its own physical infrastructure.75 But, to achieve a completely facilities-based market structure, new entrants would have to overcome enormous economic and legal barriers to entry. They would have to build their own local loops, dig up the streets to bury their wires or optical fiber, put up their own poles to carry above-ground wire and fiber, and deploy their own switching centers. The core legal strategy embedded in the 1996 Act was to use its interconnection, unbundling, and resale obligations as a way of giving new entrants a foothold until they could build out their own physical infrastructure.76 Incentives for incumbents also were important. If incumbents could receive revenue for sharing their existing facilities with new entrants, they might have less incentive to deploy new technologies that would reduce costs and open up revenue opportunities from new product lines. The FCC dealt with this possible adverse incentive by basing allowable charges for new entrants on forward-looking, rather than historical, costs.77 The incumbent could not recover costs based on the cost of its embedded technologies, but on the costs of the most efficient technology in the marketplace—costs that were falling rapidly.78 That reduced total revenue achievable by maintaining existing assets and provided an incentive to the incumbent to upgrade.79

71 See 47 U.S.C. § 251 (1999) (requiring interconnection and unbundling of network elements); id. § 259 (requiring established providers to share infrastructure with new entrants); id. § 271 (blocking Bell operating companies from entering the long distance market until they ensured competition in their local exchange markets).

74 See H.R. REP. No. 104-204(i) (explaining the need for the resale obligation to permit emergence of facilities-based competition).

75 Id.

77 Id.; 47 C.F.R. § 51.505 (2012).

78 See id.

79 See Time Warner Cable, 15 FCC Rcd. 1124, 1134 (Jan. 5, 2000) (explaining that incumbent cable television providers are not entitled to access open video systems in their market area “in order to preserve the incentive of such cable operators to upgrade and maintain their franchised systems and to promote facilities-based competition. If such an operator were permitted to become a programming provider on an open video system serving its franchise areas, it would have less incentive to invest in its own facilities and strengthen its position as a facilities-based competitor in these areas.” (footnote omitted)).
Three years after the enactment of the 1996 Act, some of the key controversies reached the Supreme Court in *AT&T Corp. v. Iowa Utilities Board*. The Court approved most aspects of the FCC’s approach, and directed that the Commission give more attention to the criteria for unbundling and sharing specific network elements.

2. “Digital Tornado”

Shortly after enactment of the 1996 Act, on March 27, 1997, the FCC released a staff paper entitled *Digital Tornado: The Internet and Telecommunications Policy*, authored by Kevin Werbach, analyzing the FCC policy alternatives for the Internet. A central theme running through the paper was that the FCC, and other government agencies, should seek to limit regulation of Internet services. In framing his approach, Werbach stated:

> Because it is not tied to traditional models or regulatory environments, the Internet holds the potential to dramatically change the communications landscape. The Internet creates new forms of competition, valuable services for end users, and benefits to the economy. Government policy approaches toward the Internet should therefore start from two basic principles: avoid unnecessary regulation, and question the applicability of traditional rules.

3. Making the “Pipe” Bigger

Once the basic decision was made to privatize and commercialize the Internet, and once the PSTN was opened up, key technological developments increased the momentum through the 1990s and 2000s. The first barrier to fall allowed access speeds to increase. When the Internet was unleashed in the early 1990s, access was possible through dedicated lines leased from the telephone company or through dial-up

81 *Id.* at 387–92.
83 *Id.*
84 *Id.* at ii.
85 Use of the word “speed” is potentially misleading. All electronic signals move more or less at the speed of light—186,000 miles per second. The rate at which data can be handled, however, depends on bandwidth. An ordinary telephone voice circuit provides about 4 KHz of bandwidth, limiting data rates to 56 Kbps with advanced modulation techniques. *See Margaret Levine Young, Internet: The Complete Reference* 10 (2d ed. 2002). “Speed,” as used in this text, refers to the speed of data transmission.
modems connected to ordinary voice telephone lines. By the early 2000s, penetration of cable television infrastructure, the development of cable modems, and the modification of cable networks to handle traffic in both directions, revolutionized bandwidth available at the edges of the network.

Somewhat later, new technologies deployed by the telephone companies, principally Digital Subscriber Lines (DSLs), allowed data rates on retail telephone lines to increase commensurately. By the end of the twentieth century, major telephone service providers, having mainly crushed the threat of competitive local exchange carriers (CLECs), committed substantial capital to improve their networks by deploying optical fiber beyond central offices, often directly to residences and commercial premises, and marketing DSL service to all of their customers.

One of the impediments to widespread use of the Internet was the need to know the domain name (URL) of a desired destination. Search engines evolved as a kind of automated index to URLs. One of the most successful early search engines was AltaVista, developed by Digital Equipment Corporation and introduced in 1995. By the beginning of 1999, Google began to emerge as a search engine with a better search algorithm, and by the mid-2000s it dominated the search engine industry.

86 Typical bandwidth was 1.4 to 1.5 Mbps on a leased T1 line or 56 Kbps through a dial-up modem. Id. at 13.
87 DSL, developed at Bellcore in the mid-1980s, demonstrated the feasibility of inserting broadband digital signals on the wires designed for baseband analog voice signals. See Gareth Marples, The History of DSL Internet Access—A Race for Technological Speed, THEHISTORYOF.NET (Sept. 11, 2008), http://thehistoryof.net/history-of-dsl.html.
89 Widespread availability of DSL required telephone companies to remove loading coils from the part of the network that connected central offices to residential and commercial customers. Loading coils extend the reach of voice signals by reducing the capacitance of longer lines. See Load Coils?, DSLREPORTS.COM, http://www.dslreports.com/faq/657 (last visited May 1, 2012). Capacitance is an undesirable feature of a communications channel because it smooths out the oscillations in an analog signal. See id. Loading coils, however, also block higher frequency signals, making DSL data transmission impossible.
90 Widespread deployment of an optical fiber infrastructure has made it possible for the Internet to accommodate exploding demand for higher bandwidth. Signals transmitted over optical fiber experience much less attenuation and interference than the same signals transmitted over copper (or other metallic) wire. An optical fiber offers orders of magnitude, higher bandwidths, and longer link distances than copper wire.
Compression algorithms facilitated distribution of music and videos. Internet distribution of music exploded with the development of the MP3 compression algorithm and associated hardware and software known as codecs.94 The introduction of mpeg-4 in 1998 similarly facilitated Internet distribution of full-motion video files.95

Load-sharing was widespread by 2000, enhancing the capacity of popular websites.96 As e-commerce exploded, the traffic to popular websites was more than a single server could handle.97 A protocol was needed that could share the burden among multiple servers controlled by the same entity and providing essentially the same information.98 The result was “load sharing,” which “balance[s] the load across a bunch of physical servers . . . mak[ing] those servers look like one great big server to the outside world.”99

Wireless data communications at speeds similar to those employed in wired computer networks have permitted the Internet to expand beyond the infrastructure defined by physical wires.100 One can access the Internet now—at least in areas of fairly dense population—from anywhere.

Development and deployment of wireless data systems that could handle data at speeds useful to computer networks awaited assignment of higher-frequency radio spectrum and hardware that could operate at those higher frequencies.101 In 1985,

95 Both standards involve patented technology that is licensed by MPEG LA, LLC. MPEGLA, http://www.mpegla.com/main/default.aspx (last visited May 1, 2012); see id.

98 Id.

99 Id. Early efforts involved having a DNS serving the URL of the service provide different IP addresses in rotation, as queries were received. Id. at 1–2. Later developments involved having a cluster of servers listen to one IP address through a border router, which then redirected queries to various servers behind the firewall with locally assigned IP addresses. Id. at 3. Later, “application delivery controllers” were developed, which resided outside application servers. They presented virtual server addresses to the outside world and then forwarded connections to the most appropriate real server. Id. at 4.

100 See, YOUNG, supra note 85, at 15.

101 Theoretical principles of radio engineering dictate that the bandwidth of a signal increases as the data rate being transmitted increases. The higher bandwidth necessary for higher data rates could not be accommodated at lower frequencies which were already crowded with broadcast radio and television, military and public safety, and other commercial communications.
the FCC first authorized the use of unlicensed102 spread spectrum103 transmitters in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands.104 The result was an explosion of wireless local area networks (LANs) under protocols popularly known as Wi-Fi.105

Third (3G) and fourth generation (4G) wireless technologies, generally associated with smart phones, enable high-bandwidth wireless connections for a variety of portable devices, including smartphones, tablets such as the iPad, and netbook and laptop computers.106 These technologies became commercially available in 2001107 and 2010, respectively.108 Expanding broadband wireless access was an important goal of the congressionally mandated National Broadband Plan,109 published by the FCC in 2010.110

The ubiquity of high-bandwidth wireless data connections means that one can be connected to the Internet all the time. Constant connectivity has two major implications. First, it dramatically increases demand for Internet-accessible products and services. Audiences can listen to music almost constantly, watch movies or other video entertainment at odd moments of leisure while they wait for appointments or ride the bus or train, and order books or other consumer products impulsively, as soon as they

\begin{footnotes}
\item[102] Before that, every transmitter required a station license.
\item[103] The FCC explained spread spectrum modulation: “Spread spectrum communication systems use special modulation techniques that spread the energy of the signal being transmitted over a very wide bandwidth. The information to be conveyed is modulated onto a carrier by some conventional techniques, usually a digital modulation technique, and the bandwidth of the signal is deliberately widened by means of a spreading function. The spreading technique used in the transmitter is duplicated in the receiver to enable detection and decoding of the signal. Spread spectrum systems offer two important technological advantages over conventional transmission schemes. First, the spreading reduces the power density of the signal at any given frequency within the transmitted bandwidth, thereby reducing the probability of causing interference to other signals occupying the same spectrum. Second, the signal processing in spread spectrum systems tends to suppress undesired signals, thereby enabling such systems to tolerate strong interfering signals.” FCC SPECTRUM POLICY TASK FORCE, REPORT OF THE UNLICENSED DEVICES AND EXPERIMENTAL LICENSES WORKING GROUP 8 n.13 (2002), available at http://transition.fcc.gov/sptf/files/E&UWGFinalReport.pdf [hereinafter FCC UNLICENSED DEVICES REPORT].
\item[104] \textit{Id.} at 8.
\item[105] \textit{Id.} at 6.
\end{footnotes}
hear favorable reports from a friend or on the radio or television. This phenomenon means that industry structures built around segmentation of delivery channels—such as movie theaters, television, and DVDs in the video entertainment industry—must now recalibrate their business models to accommodate a marketplace where the old product categories are irrelevant.

Second, ease of use becomes even more important when one is browsing the Internet, checking out friends on Facebook, playing a song, watching a movie, or ordering merchandise on a small handheld device instead of a desktop or laptop computer. This means that consumers will gravitate to one-stop, integrated services, such as Amazon and Facebook, instead of going to the trouble of checking out different websites. This is likely to intensify the preference for cyberspace “empires,” considered in Part II.A.

4. Convergence of Cable Modem and Telephone Regulation

The FCC gradually merged aspects of cable and telephone regulation as it applied to the Internet, initially deregulating DSL, and more recently recognizing that some regulation may be necessary to assure net neutrality, as considered in Part II.B.

In National Cable & Telecommunications Ass’n v. Brand X Internet Services,111 the Supreme Court upheld the FCC’s determination that broadband Internet service provided by cable companies does not constitute a “telecommunications service” under Title II of the Communications Act.112 Accordingly, such service is not subject to mandatory common carrier regulation. Shortly after deregulating cable modem service, the FCC announced a decision to treat broadband Internet access provided by Regional Bell Operating Companies (RBOCs) like cable modem Internet access,113 placing telephone company offerings of broadband service outside all the traditional telephone company regulatory requirements—common-carriage, unbundling, resale, tariffing, price regulation, and inter-carrier compensation.114

Robust competition for Internet access services is emerging and will accelerate, the Commission concluded, encompassing not only the present market leaders, cable modem service and DSL service, but increasingly satellite-based and fixed broadband wireless,115 and access through the electricity grid.

111 545 U.S. 967 (2005).
112 Id. at 996–97.
113 Appropriate Framework for Broadband Access to the Internet over Wireline Facilities et al., 20 FCC Rcd. 14853 (2005).
114 Exemption of the broadband pipe provided by the telephone companies does not, however, mean that the services they provide that run through the pipe are exempt. Consider the FCC’s treatment of voice over IP Providers (VoIP). See id. ¶ 54, at 14964.
115 Id. ¶ 59, at 14885.
D. Domain Name Regulation

Domain name administration is central to regulation of the Internet. One can have an Internet presence such as a website only if one has a domain name. Refusal to register a domain name or revocation of an existing domain name excludes the applicant or holder from the Internet. Accordingly, whoever regulates domain names has fundamental regulatory control over the Internet.

Certain characteristics of the Internet make regulation of addresses and domain names necessary. The Internet’s common name and address space means that each domain name and numerical Internet address must be unique. Otherwise, routers could not route packets unambiguously to the correct destination.

Soon after taking office, the Clinton administration undertook the task of deciding how domain name regulation should work in a decentralized, privatized Internet. The process continued until well into the President’s second term, and resulted in the Green Paper, which announced that the United States government would recognize a new not-for-profit corporation that would take over administration of the domain name system. The result was the Internet Corporation for Assigned Names and Numbers (ICANN).

117 That is not strictly true. Internet packets are routed based on numerical IP addresses. One could theoretically maintain an Internet presence with an IP address and without a domain name, but users seeking the holder of the IP address would have to know the numerical address. Moreover, assignment of IP addresses is integrated with assignment of domain names. Management of Internet Names and Addresses, 63 Fed. Reg. 31,741, 31,742 (June 10, 1998) (explaining the relationship between assigning IP addresses and assignment of domain names) [hereinafter White Paper].

119 See White Paper, supra note 117, at 31,741 (summarizing process for developing the Green Paper). The Green Paper actually was a proposal with a request for comments. See Green Paper, supra note 118, at 8827. The policy statement emerged from the comment process. White Paper, supra note 117, at 31,741 (explaining the Green Paper). Nevertheless, the final policy statement is popularly known as the Green Paper, as well.

120 White Paper, supra note 117, at 31,749.

121 Under solicitation number 52SBNT9C1020, the National Institute of Standards and Technology solicited a sole source contract from ICANN. The United States government and ICANN entered into a memorandum of understanding that provided ground rules for ICANN. HENRY H. PERRITT, JR., LAW AND THE INFORMATION SUPERHIGHWAY 521 (2d ed. 2001). The relationship among ICANN, registries, and registrars is summarized in Dotster, Inc. v. ICANN, 296 F. Supp. 2d 1159, 1160 (C.D. Cal. 2003).
ICANN adopted the Uniform Domain-Name Dispute Resolution Policy, imposing on all registrants of domain names an obligation to submit to private dispute resolution under ICANN rules. ICANN also adopted rules for domain name dispute resolution. The rules provide uniform standards for complaints, private resolution panels, and power of panels. A number of organizations, including the World Intellectual Property Organization (WIPO), established dispute resolution mechanisms to comply with the ICANN rules. The WIPO panels have resolved several thousand disputes, although WIPO’s Uniform Dispute Resolution Policy has been subjected to sharp criticism. I am a member of the panel for WIPO dispute resolution.

Though the ICANN dispute resolution system is limited to disputes alleging that domain names interfere with trademarks, a broader power exists as well. Registries are obligated by standard ICANN terms to terminate domain names when the holder engages in “abuse.” In October 2008, the ICANN staff issued a report on registration abuse policies, critical of the lack of uniform policies in applying the abuse standard. Nevertheless, the abuse policies are potentially available to use domain names as leverage to enforce a broader set of legal duties. Enforcing an international or foreign adjudicatory decision against Internet domain names can be an effective supplement to traditional judgment execution against tangible property. The domain registry would be the “sheriff,” acting on a “writ of execution.” As the ICANN Staff Report indicated, more uniform policies are needed to make clear what “judgments” are entitled to enforcement and what process is due before a domain name is revoked.

124 Id.
125 See, e.g., Domain Name Dispute Resolution Policies, supra note 122.
129 See Uniform Domain Name Dispute Resolution Policy, supra note 123.
131 Id. at 5.
133 ABUSE REPORT, supra note 130, at 45; see also Perritt, supra note 132, at 1178.
E. Immunity for Intermediaries

Tort liability for intermediaries might impede broad access. On the other hand, intermediaries are attractive targets to satisfy the transborder jurisdiction problem, as considered in Part I.F. This tension concerned the Washington Group. We brainstormed about two directions for legal intervention: recognizing an immunity for intermediaries, and establishment of an alternative dispute resolution mechanism to address most claims of harm resulting from Internet-based content. The immunity we considered was codified in section 230 of the Communications Decency Act, for everything except intellectual property, and in the safe harbor provisions of the Digital Millennium Copyright Act (DMCA). Alternative dispute resolution would reduce intermediary concerns about liability because it could lessen the uncertainty and costs of litigation in the regular courts, and could limit remedies to removal of the accused content. Even if such systems did not preempt traditional judicial processes and remedies—which would be difficult to do without an international treaty—it would divert many controversies into the alternative system. The alternative dispute resolution ideas were partially codified in the Domain Name Dispute Resolution system mandated as a requirement for Domain Name registrars, and in the procedural provisions of the DMCA safe harbor.

F. Jurisdiction

Figuring out how the Internet should be regulated involved figuring out how prescriptive and adjudicatory jurisdiction should work. Legal jurisdiction is

134 See supra notes 19–23 and accompanying text.
137 See supra Part I.D.
138 To qualify for the immunity, a service provider must remove material when it receives notice directed to its designated agent claiming that the material infringes a copyright. The notice must meet requirements defined in the statute. The originator of removed material is entitled to notice and to have the material put back up unless the person claiming copyright infringement files suit for infringement. 17 U.S.C. § 512(c)(2)–(3), (g)(2)(C).
140 Prescriptive jurisdiction refers to the power to make rules. Adjudicatory jurisdiction refers to the power to adjudicate alleged rule violations. See Graeme B. Dinwoodie, Developing a Private International Intellectual Property Law: The Demise of Territoriality?, 51 WM. &
fundamentally local, aligned with the boundaries of sovereign power; the Internet is inherently global, crossing sovereign boundaries.

A number of early cases, some involving pre-Internet technologies such as dial-up bulletin boards, crystallized concerns that traditional doctrines of adjudicative jurisdiction might be unsuitable for the Internet. The early case law was synthesized by the district court in Zippo Manufacturing Co. v. Zippo Dot Com, Inc., which articulated a “sliding scale,” relied on in many subsequent personal jurisdiction cases. Zippo held that passive websites should not be subject to jurisdiction merely because they were visible in the forum state, but that contracts involving knowing and repeated transmission of files to and from the forum state would support jurisdiction. In between these two extremes, jurisdiction should depend on the degree of interactivity built into the website.

I wrote two law review articles in the mid-1990s summarizing the state of the debate. At first, it was difficult to get the American Bar Association and others interested in the question. The prevailing view among lawyers was that the Internet was a toy and would never become a significant channel for professional interaction or commerce. Nevertheless, some of us in the bar, the industry, and the academic and policy communities argued about how to adapt traditional jurisdiction concepts to the realities of the Internet.

The two poles in the debate were framed by David Johnson (a member of the Washington Group) and David Post, on the one hand, and Jack Goldsmith, on the other. In 1997, as I was moving from the faculty of Villanova University School of Law to become the Dean at Chicago-Kent College, I organized a law review...
symposium including Johnson and Goldsmith to explore the debate among several of us about Internet jurisdiction.149

Post and Johnson argued that, “[C]yberspace—is creating a realm of human interaction in which . . . physical location and physical space are becoming both indeterminate and functionally irrelevant.”150 “Cyberspace . . . needs and can create its own law and legal institutions.”151 Jack Goldsmith argued that cyberspace is not “hermetically separated from the ‘real’ world.”152 “The easiest way to control illegal cross-border information flows is to enforce the regulation against the local assets of the foreign supplier of the information.”153

The Computer Science and Telecommunications Board of the National Academy of Sciences convened a committee on “Global Networks and Local Values” in the late 1990s to consider these questions.154 The committee’s report155 stopped short of making policy recommendations, but observed that “extraterritorial enforcement of national laws is possible in principle, [but] this generally presupposes that the nation-state can exercise jurisdiction over some element of the transnational activity—e.g., by seizing local property or by restricting access to its market.”156

At the turn of the century, the Hague Conference on Private International Law undertook an effort to negotiate an international convention on adjudicatory jurisdiction and transnational enforcement of judgments in the international e-commerce context.157 Expert groups convened by the Conference158 considered the idea of

153 Id. at 1125.
156 Id. at 192.
“targeting” as a principle for localizing Internet activity: targeting consumers in a particular country would support jurisdiction; unsophisticated sites not engaging in targeting would not be subject to jurisdiction elsewhere based on the website alone.\footnote{Ottawa Report, supra note 158, at 7.}

Early in the activities of the Conference, I encouraged the State Department representative to reach out to stakeholders and get them involved—there would be little point in developing a draft convention only to have significant political interests in the United States torpedo it. Representatives of the entertainment industry (led by Disney) and representatives of the Internet industry were split.\footnote{See generally Mary Shannon Martin, Keep it Online: The Hague Convention and the Need for Online Alternative Dispute Resolution in International Business-to-Consumer E-Commerce, 20 B.U. INT’L L.J. 125, 136–41 (2002) (discussing different views in relation to the convention).} The entertainment industry favored expansive jurisdictional rules because they wanted to be able to sue alleged copyright infringers in United States courts.\footnote{See Ronald A. Brand, Intellectual Property, Electronic Commerce and the Preliminary Draft Hague Jurisdiction and Judgments Convention, 62 U. PITT. L. REV. 581, 594–97 (2001) (discussing intellectual property rights in the context of the Convention).} The Internet industry, particularly internet service providers (ISPs), wanted restrictive jurisdictional rules because they wanted to insulate themselves from litigation in foreign forums.\footnote{See id. at 597–98 (discussing concerns related to electronic commerce).} The French Yahoo! case was on everyone’s mind.\footnote{In the Yahoo! case, a French court ordered Yahoo! to block access to materials on Nazism that violated French law. See Yahoo! Inc. v. La Ligue Contre Le Racisme, 433 F.3d 1199, 1202–03 (9th Cir. 2006) (en banc) (holding that the district court lacked personal jurisdiction; summarizing procedural history). Yahoo! unsuccessfully argued that “there was no technical solution which would enable it to comply fully with the terms of the court order.” Id. at 1203. The United States litigation was an attempt by Yahoo! to block enforcement of the French judgment in the United States.} Because of the conflict between the two most important stakeholders, the United States government was unable to take a position on the more important issues at the center of the effort. This frustrated and annoyed the non-U.S. participants, and the result was essentially to abandon the effort to craft an international convention.\footnote{See Arthur T. von Mehren, Drafting a Convention on International Jurisdiction and the Effects of Foreign Judgments Acceptable World-Wide: Can the Hague Conference Project Succeed?, 49 AM. J. COMP. L. 191, 193 (2001) (discussing lack of consensus among participants).}

The Zippo formula, while incomplete, provided the key for the convergence on a set of principles generally followed now in hundreds of cases.\footnote{See, e.g., ALS Scan, Inc. v. Digital Serv. Consultants, Inc., 293 F.3d 707, 714 (4th Cir. 2002) (adopting the Zippo model to find personal jurisdiction); Mink v. AAAA Dev. LLC, 190 F.3d 333, 336 (5th Cir. 1999) (using the reasoning of Zippo to find personal jurisdiction over the defendant); Cybersell, Inc. v. Cybersell Inc., 130 F.3d 414, 419 (9th Cir. 1997) (adopting the Zippo formula).} In them, the
Goldsmith view has largely prevailed: the customary requirement for “minimum contacts” and “fair play and substantial justice” have proved workable for the vast majority of Internet cases.\(^{166}\) Pressure for new jurisdictional concepts or for an international treaty has largely evaporated.

Nevertheless, the focus on enforcing judgments against local assets puts pressure on immunity for intermediaries\(^ {167}\) because intermediaries usually have local assets and they represent deep pockets.

\(\text{G. Electronic Commerce} \)

1. In General

Realization of the Internet’s potential to transform private markets required the proliferation of e-commerce. E-commerce had existed since the 1960s through dedicated communication circuits and by means of Electronic Data Interchange (EDI) standards that permitted disparate proprietary computer systems to make sense of the data sent and received.\(^ {168}\) Electronic funds transfer, ATM machines, and point-of-sale credit card terminals were widely accepted by the end of the 1980s.\(^ {169}\) The spread of the Internet made an easy-to-use interface available in the form of web browsers, and simplified the processes of establishing computer-to-computer connections.

1995 was a pivotal year. Jeff Bezos launched Amazon.com,\(^ {170}\) and Dell and Cisco both began to use the Internet to interact directly with customers.\(^ {171}\) By mid-2011, few types of consumer goods were not sold online. E-commerce flourished on...
the Internet despite early concerns about payment systems, lack of consumer trust, consumer reluctance to incur transaction costs of using the web, and reluctance of service or product suppliers to risk their intellectual property. Most of these concerns proved unwarranted. In the mid-1990s, many argued that e-commerce would require the development of entirely new payment systems. I disagreed. In two law review articles written in the late 1990s, I argued that the existing credit card systems would prove perfectly adequate and acceptable to consumers. By 2000, it was clear that this was the case, largely because of the dispute resolution system built in to credit card transactions.

Concerns about inconvenience were mitigated by one-click shopping, popularized by Amazon, beginning in 1999. The one-click method reduced the number of steps a consumer must take to order an item from an e-commerce site, and relieved a consumer from having to reenter all of his basic information, such as name, address, and credit card information.

On the other hand, the easy replication of information in digital form undermined traditional business models in some industries, particularly those for music and video entertainment. The result was a war over enforcement of copyright on the Internet, which still clouds the future of e-commerce.

172 See infra notes 173–75 and accompanying text.
173 Compare Sarah Jane Hughes, A Case for Regulating Cyberpayments, 51 ADMIN. L. REV. 809, 813–14 (1999) (noting the demise of most cyberpayment systems as e-commerce developed), with Hiller & Cook, supra note 168, at 98 ("To the extent electronic commerce grows, it is certain that it will not flourish unless acceptable systems for payment are available.")., and Kerry Lynn Macintosh, How to Encourage Global Electronic Commerce: The Case for Private Currencies on the Internet, 11 HARV. J. L. & TECH. 733, 738–39 (1998) (arguing that the Internet needs its own private electronic currencies), and Robert F. Stankey, Internet Payment Systems: Legal Issues Facing Businesses, Consumers and Payment Service Providers, 6 COMMLAW CONSPECTUS 11, 12 (1998) (arguing that the percentage of credit card transactions will decline as e-commerce grows).
175 Henry H. Perritt, Jr., Dispute Resolution in Cyberspace: Demand for New Forms of ADR, 15 OHIO ST. J. DISP. RESOL. 675, 676 (2000) (explaining why intermediary-provided dispute resolution, such as credit card charge-backs and escrow arrangements, prove more attractive in practice than independent third-party mechanisms such as arbitration or mediation).
176 Id. at 690–94 (explaining credit card charge-back system).
177 Ronald J. Mann & Travis Siebeneicher, Just One Click: The Reality of Internet Retail Contracting, 108 COLUM. L. REV. 984, 1002 (2008) (noting Amazon's "renowned" one-click patent).
178 Amazon.com, Inc. v. Barnesandnoble.com, Inc., 239 F.3d 1343, 1348 (Fed. Cir. 2001). See generally id. at 1360–66 (suggesting Amazon's patent for one-click ordering might be invalid).
179 See infra notes 180–213 and accompanying text.
Copyright

Proliferation of personal computers set off alarm bells in the community of intellectual property rightsholders, particularly those whose business models depended on protecting copyright. As the Internet became more popular, major organizations of rightsholders aggressively promoted copy protection schemes and launched aggressive litigation campaigns against perceived infringers.

The ongoing controversy was shaped by the enactment of the DMCA, extension of the copyright term, imposition of liability on major unlicensed file sharing services, extension of secondary liability to intermediaries, and constriction of the fair use privilege.

a. DMCA

The DCMA prohibits circumvention of technological measures that effectively control access to protected works and the use of technologies that facilitate circumvention. This encourages copy protection, which reduces user flexibility in working with copyrighted materials.

b. Extension of Copyright Term

In *Eldred v. Ashcroft*, the Supreme Court rejected 7–2, a constitutional challenge to the Copyright Term Extension Act (CTEA), which extended copyright

182 See infra notes 183–213 and accompanying text.

185 Id. § 1201(b).

protection from creation until seventy years after the author’s death and extended the term for copyrights already existing at the time of enactment.189 The extension reduces the portion of works in the public domain.190

c. Secondary Liability

The Supreme Court extended liability for secondary infringement of copyright in \textit{Metro-Goldwyn-Mayer Studios Inc. v. Grokster, Ltd.},191 holding that the distributor of music file-sharing software could be secondarily liable for direct infringement by users of the software upon proof that the distributors clearly expressed intent that the software be used for infringing activities.192

So far, lower courts have resisted attempts to expand secondary liability in other contexts. In \textit{Viacom International Inc. v. YouTube, Inc.}, the plaintiffs asked the district court to hold YouTube liable for secondary infringement for failing to make it easier for rightsholders to cause infringing material posted by others to be removed from the YouTube site.193 The court granted summary judgment to the defendants, holding that they satisfied the requirements of the DMCA safe harbor by insisting on identification of specific infringing items before taking steps to remove them and that they did not lose the safe harbor protection by failing to deploy more aggressive infringement monitoring software.194

In \textit{Perfect 10, Inc. v. Visa International Service Ass’n}, the court of appeals affirmed dismissal of an action brought against credit card processors for copyright infringement arising from their cardholders’ downloading copyrighted images from third-party websites.195 The court of appeals, agreeing with the district court, found that the credit card companies had no direct connection to that infringement.196 Although credit cards made it easier for websites to profit from infringing activity, infringement could occur even without payment.197 Perfect 10 did not allege “specific acts” by the credit card companies intended to encourage infringement.198 Finally, even though the credit card processors could have stopped processing credit card payments to the infringing websites, that did not mean that failure to do so equated to vicarious infringement.199 The court easily rejected a claim of contributory trademark

189 \textit{Id.}
191 545 U.S. 913 (2005).
192 \textit{Id.} at 928–41.
194 \textit{Id.} at 528–29.
195 494 F.3d 788 (9th Cir. 2007).
196 \textit{Id.} at 796.
197 \textit{Id.} at 796–97.
198 \textit{Id.} at 802.
199 \textit{Id.} at 803.
infringement, finding that the credit card companies had no power to control the activities of the infringing sites.200

Potential secondary liability by intermediaries undercuts the immunity considered in Part II.E of this Article, and thus can lead to shutting out riskier forms of content from the Internet. The DMCA’s safe harbor for intermediaries, analyzed in Part II.G.2, combined with the result in the \textit{Viacom} case,201 mitigates this risk.

d. Fair Use

By far the most important privilege within the Internet context is the fair use privilege, codified in Title 17, § 107.202

The Supreme Court noted in \textit{Sony Corp. of America v. Universal City Studios, Inc.}203 and \textit{Campbell v. Acuff-Rose Music, Inc.}204 that the last factor—the market effect of the purported fair use—is the most important.205 In recent years, the first factor—the purpose and character of the use—has gained in importance as “transformative” activities by accused infringers have been recognized as socially beneficial.206

Early cases involving the Internet took a restrictive view of fair use. In \textit{UMG Recordings, Inc. v. MP3.com, Inc.},207 the district court denied the fair use defense of an Internet web service that purchased tens of thousands of popular CDs and copied recordings onto its web servers so that subscribers could play the recordings from wherever they had Internet connections.208 In \textit{Bowers v. Baystate Technologies,}

\begin{itemize}
\item[(1)] the purpose and character of the use, including whether such use is of a commercial nature or as for non-profit educational purposes;
\item[(2)] the nature of the copyrighted work;
\item[(3)] the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and
\item[(4)] the effect of the use upon the potential market for or value of the copyrighted work.
\end{itemize}

\textsection{107} (1)–(4).

200 \textit{Id.} at 807.

201 See supra notes 193–94.

202 17 U.S.C. § 107 (2006). This section was intended to codify decisional law, rather than to expand or alter it. See \textit{Quinto v. Legal Times of Wash., Inc.}, 506 F. Supp. 554, 560 (D.C. Cir. 1981); Elsmere Music, Inc. v. NBC, Inc. 482 F. Supp. 741, 745 n.8 (S.D.N.Y. 1980). Section 107 explains that whether a particular use of a copyrighted work is fair use, and thus non-infringing, is to be determined by consideration of a number of factors including:

204 510 U.S. 569 (1994).

205 \textit{Id.} at 574; \textit{Sony}, 464 U.S. at 476 (Blackmun, J., dissenting).

206 See \textit{Kelly v. Arriba Soft Corp.}, 280 F.3d 934, 940 (9th Cir. 2002) (finding the search engine presentation of thumbnail sketches of copyrighted photographs to be transformative).

207 92 F. Supp. 2d 349, 350 (S.D.N.Y. 2000).

208 \textit{Id.} at 350, 352.
Inc.209 the Federal Circuit held that the Copyright Act did not preempt enforcement of a broad contractual prohibition on reverse engineering contained in a shrink-wrap agreement, even though the contract had the effect of prohibiting what would be fair use under the Copyright Act.210

More recently, courts have breathed life back into fair use. In \textit{Kelly v. Arriba Soft Corp.},211 the Court of Appeals for the Ninth Circuit affirmed in part and reversed in part summary judgment in favor of search engine operators accused of copyright infringement for presenting “thumbnail” versions of copyrighted images on its search engine. The court stated that the uses were transformative due to the public benefit of the search engine and because use of the plaintiff’s images in the thumbnails did not harm the market for the plaintiff’s images or the value of his images.212 The plaintiff was denied fair use with respect to full-size reproductions of the photographs.213

\textbf{H. Security and Surveillance}

The shift of information and communications to the Internet spawned concern from the law enforcement and intelligence communities that many of their traditional investigatory and intelligence-collection tools would become ineffective. The result has been the development of a variety of legal constraints and privileges related to electronic surveillance.

\textbf{1. Wiretap Act and Stored Communications Act}

Law enforcement authorities may compel access to communications and electronic messages and files by obtaining warrants and other orders under the provisions of the Wiretap Act and the Stored Communications Act (SCA),214 or by obtaining a traditional search warrant under Rule 41 of the Federal Rules of Criminal Procedure.215

209 320 F.3d 1317 (Fed. Cir. 2003).
210 \textit{Id.} at 1317, 1324.
211 280 F.3d 934.
212 \textit{Id.} at 944.
213 \textit{Id.} at 948.
215 FED. R. CRIM. P. 41. Important differences exist between Rule 41 and Title III wiretap orders: a search warrant may be issued by a magistrate judge, but a wiretap warrant must be issued by an Article III judge; any federal law enforcement officer or attorney for the government may apply for a search warrant, but a wiretap warrant requires approval by designated high officials in the Justice Department; a search warrant may be issued upon a finding
The requirements for accessing stored electronic communications under the SCA are less demanding than the requirements for accessing live wire, oral, or electronic communications under the Wiretap Act or under Rule 41.216 The procedures for intercepting stored communications and for accessing remote computing facilities are more flexible because the Fourth Amendment does not limit access to records kept by third parties.217 The SCA addresses searches and seizures of three different types of stored communications: (a) contents of stored electronic communications that have been in electronic storage for 180 days or less; (b) contents of stored electronic communications that have been in electronic storage for more than 180 days; and (c) records, not involving content, concerning electronic communications.218 Stored communications in storage for 180 days or less may be accessed pursuant to either federal or state warrants.219 Information stored for more than 180 days may be accessed with a warrant, with notice to the subscriber or customer under an administrative, grand jury, or trial subpoena; or pursuant to a court order based on a governmental showing that the information sought is “relevant and material to an ongoing criminal investigation.”220

Transactional records concerning stored electronic communications may be accessed pursuant to a warrant, a court order such as that necessary for information stored in excess of 180 days, a formal written request relevant to a law enforcement investigation concerning telemarketing fraud, or an administrative subpoena authorized by federal or state statute.221 The SCA immunizes e-mails stored on the servers of an e-mail service provider from civil subpoenas.222

Pen\textasciitilde Trap orders223 are used for obtaining stored data, such as Twitter screen names and subscriber information, the dates and times such screen names were used, IP addresses used, and information on payment methods.224

216 See supra note 214.
218 § 2703.
219 Id. § 2703(a).
220 Id. § 2703(b)–(d); see also Steve Jackson Games, Inc. v. U.S. Secret Serv., 816 F. Supp. 432, 432–33 (W.D. Tex. 1993) (awarding damages for violation of ECPA stored communications provisions but finding no Title I interception).
221 § 2703(c).
223 §§ 3121–3127.
224 See In re: § 2703(d) Order, 787 F. Supp. 2d 430 (E.D. Va. 2011) (rejecting challenge to sealed SCA order compelling disclosure by Twitter). The court held that, because the government did not seek access to communications content, it need not meet the higher standards of content disclosure under the SCA. Id. at 434–35.
In United States v. Warshak, the court of appeals held that:

[A] subscriber enjoys a reasonable expectation of privacy in the contents of emails “that are stored with, or sent or received through, a commercial ISP.” . . . The government may not compel a commercial ISP to turn over the contents of a subscriber’s emails without first obtaining a warrant based on probable cause. Therefore, because they did not obtain a warrant, the government agents violated the Fourth Amendment when they obtained the contents of Warshak’s emails. Moreover, to the extent that the SCA purports to permit the government to obtain such emails warrantlessly, the SCA is unconstitutional.

2. Carnivore

Carnivore (renamed DCS-1000 in 2001) was a controversial system used by the FBI to facilitate court-ordered intercepts of Internet communications and transactional data, including e-mail and web communications. The Carnivore controversy illustrates adaptation of traditional surveillance technologies and law to networked environments. Before Carnivore existed, an ISP was often unable to comply with an

225 631 F.3d at 266 (6th Cir. 2010).
226 Id. at 288 (citations omitted). Although the government obtained access to about 27,000 e-mails without informing the subscriber, the court held that the evidence obtained from the e-mails could not be excluded from a criminal trial because the government relied in good faith on the SCA. Id.
227 For an extensive commentary on Carnivore, see Maricela Segura, Note, Is Carnivore Devouring your Privacy?, 75 S. CAL. L. REV. 231, 235–36 (2001), and Ted Bridis, FBI Stops Using Carnivore Wiretap Software, USA TODAY.COM (Jan. 1, 2009, 2:29 AM), http://www.usatoday.com/tech/news/surveillance/2005-01-19-carnivore-obsolete_x.htm. Carnivore was originally modified sniffer software developed by the FBI and deployed on a Pentium III microcomputer. Jeff Tyson, How Carnivore Worked, HOWSTUFFWORKS.COM, http://www.howstuffworks.com/carnivore3.htm. When the Carnivore system was attached to a local area network segment by one-way tap, the FBI could execute a court order to eavesdrop on electronic communications. Id. Depending on the content of the order, Carnivore was set to intercept and record only those packets containing certain IP addresses, e-mail addresses, or text strings. See id.

The network interface card installed with the Carnivore software “saw” all of the packets traversing the particular network segment into which Carnivore was connected, but only those packets meeting the specified criteria were recorded for further processing. Id. The recorded packets were written as a file on a zip drive, along with a file containing the settings for the session that resulted in the creation of that data file. Id. See generally ILL. INST. OF TECH. RESEARCH INST., INDEPENDENT TECHNICAL REVIEW OF THE CARNIVORE SYSTEM: FINAL REPORT (2000), available at http://epic.org/privacy/carnivore/carnivore3_final.pdf [hereinafter CARNIVORE REPORT].
order because most widely available sniffer software intercepted too much. If an ISP
turned over to the FBI more information than was authorized under a court order,
the FBI might not be able to use any of the information as evidence in a subsequent
prosecution. Getting too much information constitutes a failure to “minimize” the
eavesdropping and often justifies suppression of all the information, not just that
portion that exceeds the court order.

Accordingly, technical personnel at the FBI’s Quantico laboratory undertook to
program limitations onto traditional sniffer functionality so that whenever an ISP
was unable to supply only the information authorized by a court order, the FBI could
itself deploy a system that would obtain only the authorized information.228

When word of the system’s existence leaked, much controversy erupted, leading
to congressional hearings.229 Attorney General Janet Reno, after evaluating competing
proposals, selected the Illinois Institute of Technology Research Institute (IITRI) to
perform a review.230 I was the senior legal member of the review team, which issued
its final report in December of 2000.231 We concluded that,

> [w]hen Carnivore is used in accordance with a Title III order, it
> provides investigators with no more information than is permitted
> by a given court order [that] Carnivore reduces, but does
> not eliminate, risk of both intentional and unintentional unau-
> thorized acquisition of electronic communication information
> by FBI personnel, but introduces little additional risk of acquisi-
> tion by persons other than FBI personnel.232

The report made a number of specific technical recommendations to prevent errors
in setting up Carnivore in a particular deployment and to improve audit trails.233

3. CALEA

The Communications Assistance for Law Enforcement Act (CALEA)234 obliges
telecommunication service providers to design their networks to facilitate
eavesdropping by law enforcement authorities. All of CALEA’s required capabili-
ties are expressly premised on the condition that any information will be obtained
“pursuant to a court order or other lawful authorization.”235 The FCC may not, under

228 CARNIVORE REPORT, supra note 227, at 1.
229 Id. at 3.
230 Id. at 2.
231 Id.
232 Id. at xii.
233 Id. at xiv–xv.
235 U.S. Telecom Ass’n v. FCC, 227 F.3d 450, 465 (D.C. Cir. 2000) (citing 47 U.S.C
§ 1002(a)(1)–(2)).
CALEA, “require carriers to provide the government with information that ‘is not authorized to be intercepted.’”236 CALEA applies to “telecommunications carriers,” but not to “information services.”237 Drawing the line between the two has engendered much controversy.

In **U.S. Telecom Ass’n v. FCC**, the Court of Appeals for the D.C. Circuit set aside certain parts of the FCC’s CALEA rules.238 The court approved the FCC’s interpretation of call-identifying information, available under CALEA, to include antenna tower location for cell phone calls.239 The court embraced the FCC’s reasoning that antenna tower information simply puts law enforcement agencies in the same position they had in monitoring plain old telephone service, where the telephone number provides location information.240 The court also approved the requirement to make packet-mode data available.241

The litigation was a precursor to several controversies involved in Carnivore: the argument about **Smith v. Maryland**’s242 distinction between content and dialed digits, the argument over interception of new data, such as antenna location, to make up for the absence of location information implicit with wire line wiretaps, and the challenge of separating header and payload data from packet-based communications—an issue strongly influencing some criticisms of Carnivore for over-collecting in pen mode.

In 2005, the FCC extended CALEA to Voice over Internet Protocol (VoIP) and to broadband access providers,243 a decision approved in **American Council on Education v. FCC**.244 The FCC rejected the government’s proposal that new technologies receive advance approval, finding that implementing the “proposal would have a chilling effect on innovation.”245

4. Mobile Device Location Information

District courts and courts of appeals disagree about whether “prospective cell site” data—information showing the location of a cell phone user—is available under

236 *Id.* at 465–66.
238 *U.S. Telecom*, 227 F.3d at 450, 453.
239 *Id.* at 463.
240 *Id.* 463–64.
241 *Id.* at 464–65.
the Wiretap Act, the SCA, the Pen/Trap Act, or a combination of them, or whether probable cause must be shown.

In *In re Application of the United States for an Order Directing a Provider of Electronic Communication Service to Disclose Records to the Government*,246 the court of appeals held that the magistrate judge “erred in allowing her impressions of the general expectation of privacy of citizens to transform that standard into anything else. . . . [t]he standard is a lesser one than probable cause. . . .”247 Whether the probable cause or subsection (d) requirement applies may depend on the length of time for which historical cell site information (CSI) is sought.248 A magistrate judge in another circuit relied in part on the Third Circuit’s analysis to exercise his discretion to require probable cause for access to historical CSI for a period of 113 days.249

In *In re Application for Pen Register and Trap/Trace Device with Cell Site Location Authority*,250 the district court rejected access to prospective cell site location data under the wiretap statute (or under the Pen/Trap or SCA) because “[c]ell site data does not reflect the ‘contents’ of a communication.”251 It also denied access to the data under the SCA subscriber records category.252 In *In re Application of United States for an Order Authorizing the Installation and Use of a Pen Register Device, A Trap and Trace Device, and for Geographic Location Information*,253 reviewing the other district court decisions to date,254 the district court concluded that the only authority for prospective cell site information was Rule 41, necessitating a finding of probable cause.255 Other cases reach conflicting results.256

246 620 F.3d 304 (3d Cir. 2010).
247 Id. at 313.
248 See *In re Application of the U.S. for an Order Authorizing the Release of Historical Cell-Site Information, No. 11-MC-0113 (JO), 2011 WL 679925*, at *1–2 (E.D.N.Y. Feb. 16, 2011) (granting order under subsection (d) and distinguishing historical data for longer period, for which probable cause is necessary); see also 18 U.S.C. § 2703(d) (2006).
251 Id. at 758.
252 Id. (referring to SCA subscriber records category under 18 U.S.C. § 2703(c)).
254 Id. at 303–04.
255 Id. at 311.
256 Compare *In re Application of the U. S. for an Order, 441 F. Supp. 2d 816, 826–36 (S.D. Tex. 2006)* (rejecting the government’s hybrid theory), and *In re Application of the U.S. for an Order, 415 F. Supp. 2d 211, 212 (W.D.N.Y. 2006)* (finding that a judicial officer should not be able to extrapolate from separate and independent statutory provisions authority to obtain “real time” cell location data on anything less than a showing of probable cause), and *In re Application of the U.S. for an Order, 384 F. Supp. 2d 562 (E.D.N.Y. 2005)* (finding that combination of CALEA and the Wiretap Act without probable cause did not authorize government to obtain location information by means of pen/trap order), and *In re Application of the U.S. for an Order, 412 F. Supp. 2d 947 (E.D. Wis. 2006)* (rejecting access to cell site location data, reasoning that the three statutes—the SCA, the CALEA, and the
Continued confusion over this issue is likely to result in more intrusive government surveillance based on mobile Internet technologies. If Congress intervenes, it is not certain whether it will act to protect personal privacy or to facilitate what law enforcement and intelligence communities say is necessary.

II. CONFRONTING THREATS TO THE FUTURE

The Internet has established itself as one of the dominant means for political communication, one of the principal channels for commerce, and is becoming the most important distribution mechanism for art and entertainment.\(^{257}\) As these trends continue, certain legal and policy issues will intensify.

During its first two decades, the Internet encountered a variety of actual or perceived threats to its continued growth and to its fundamental architectural characteristics. As the following sections of this Article show, some of the apparent threats turned out not to be real, and a combination of entrepreneurial and legal creativity accommodated others. The future also contains potential threats. Some will not materialize, while others may undermine the Internet’s constitution, diverting politics, social interaction, commerce, and art into other infrastructures, leaving the Internet as a historical shooting star. Still others might fundamentally crush the grassroots energy on both consumer and supplier sides that have made the Internet a success.

The most important of the threats are the replacement of the Internet’s decentralized character with an oligopolistic cluster of proprietary empires, the loss of net neutrality and discrimination against content in other forms, the eclipse of the public domain by holders of copyright monopolies, chilling of behaviorally targeted advertising, and overreaction to perceived security threats.\(^{258}\)

A. Proprietary Empires

Proprietary empires have already emerged amid the Internet’s success: Google for searches, Amazon for e-commerce, iTunes for music, and Netflix and Hulu for video entertainment. So far, their imperial policies have been benign, even in the

case of Amazon, in facilitating market access by small entrepreneurs.\(^{259}\) Imperial policies could change, however. If they do, the possibility of regulating through technology is far more threatening to the Internet’s constitution than traditional governmental regulation backed up by legal institutions.\(^{260}\)

The Internet is defined by its open architecture, as explained in Part I.B, but economic incentives exist to close the architecture. Most suppliers of services through the Internet have an incentive to allow it to function as intended—freely granting access to their own services to other suppliers performing complementary services.\(^{261}\) Circumstances also exist, however, in which supplier self-interest is served by blocking access. These typically involve a monopoly position by the one denying access.

Monopolies may arise for several reasons. For example, a supplier may have proprietary interconnection technologies protected by intellectual property law offering features that distinguish it from competitors. In such circumstances, suppliers of complementary products may be willing to pay higher-than-market rates for access, so they can incorporate the proprietary features in the integrated offering to consumers. They expect to earn more than enough revenue from the integrated product to cover the supernormal fees paid to the owner of the proprietary features. The owner of the proprietary features makes a rational economic decision as to whether its profits will be larger if it charges a competitive access fee and has a larger customer base, or if it charges a higher fee\(^{262}\) resulting in a smaller customer base. Apple provides an example of this phenomenon, resulting at different times in the adoption of competing philosophies. At some points, and for some products, Apple maintains a “closed system”: no independent supplier of complementary products and services is allowed to interconnect them with Apple’s proprietary features unless it enters into a contract and pays what are presumably supernormal fees to Apple.\(^{263}\) Other times, as with iPhone applications, Apple has adopted an open approach in which it provides the necessary interface specifications and privileges to the world, allowing entrepreneurs to develop their applications as they wish.\(^{264}\) Thousands of Apps were

\(^{260}\) See LAWRENCE LESSIG, *CODE: VERSION 2.0*, at 81–82 (2006) (explaining how regulation by technological restrictions is more subversive of liberty than traditional legal regulation by the state).

available for the iPhone in early 2010. Millions of iPhone users enthusiastically downloaded these Apps, resulting in higher profits for Apple because of the sale of more iPhones, as well as higher profits for AT&T and other iPhone service providers because consumers using Apps use more bandwidth for which they pay the service providers.

The iPhone’s open architecture for applications did not result from any intervention by the legal system. No court, legislature, or administrative agency told Apple that it was forbidden from closing the iPhone interfaces. Rather, it occurred because Apple made an independent, self-interested economic judgment that an open architecture would produce higher profits. The experience of the Internet and e-commerce strongly reinforces the attractiveness of such an open approach. Occasionally—especially in the early days of e-commerce—offerors of websites, such as directories and indexes, embrace the business model in which specific vendors would be included only if they paid a fee. In almost all cases these business models have been unsuccessful and are abandoned. Directories and indexes proliferate. Almost none charge a fee for inclusion. The motivation for the business model is premised on using free inclusion to fuel demand for other services for which a fee is charged or by noneconomic motives.

Situations exist and are likely to recur, however, when suppliers are antagonistic to this open architecture philosophy. Some of them have established businesses, the outputs of which are being drawn into the Internet’s information infrastructure, and the owners and operators of these businesses are unable to develop a business model in which these outputs can be offered for free while still sustaining the enterprise. Major record labels, film studios, and other owners of rights in entertainment content are clear examples. In other cases, economic misfortune has confronted established enterprises for reasons not directly associated with exploitation of their outputs with a profit motive.

Definition of: Open Architecture, PCMAG.COM, http://www.pcmag.com/encyclopedia_term/0,2542,t=open+architecture&i=48446,00.asp (last visited May 1, 2012).

In this context, “e-commerce” simply means developing and deploying Internet services with a profit motive.

to the Internet. The owners and operators of these businesses are scrambling to find substantive revenue streams, which causes them to look greedily at the possibility of generating revenue by charging for access to their outputs through the Internet. The newspaper and magazine industries at the end of 2009 provide clear examples.

In most cases, the law does not need to get involved. The marketplace will decide whether closed approaches are viable, force suppliers to embrace the open architecture, or risk being driven from the market. In many instances, fee-based services survive and flourish; for example, thousands of lawyers pay substantial fees for accessing court decisions and statutes offered through the Internet by Westlaw and Lexis, millions of music fans pay iTunes ninety-nine cents per song or more to download music, and travelers expect to pay fees for airline tickets and hotel rooms through the Internet. No serious analyst proposes that the law must intervene to force these services to be made available for free.

Other circumstances exist, though, posing a danger to the well-being of economic life or to the viability of the Internet’s core philosophy, which present stronger cases for legal intervention. The dynamics of a monopoly typically lead to three

272 See Reinventing the Newspaper, ECONOMIST, July 9, 2011, at 7–9 (discussing problems facing news organizations).

274 Microeconomic theory teaches that monopolists can and will charge a higher price for the same good or service that would be priced lower in a competitive market. In a competitive market, assuming that all firms have the same cost curve, any firm has an incentive to sell at a price high enough for it to earn revenue even slightly in excess of cost. No firm can charge a price higher than another firm because that would shift demand from the firm charging the higher price to firms with a lower price. That means that the price for every firm in the market is the price at which the marginal revenue curve crosses the marginal cost curve. At a lower price, firms would lose money because their revenue would not cover their costs; at a higher price, profits would be higher but other firms could gain market share by charging a price that just covers cost.

The position of a monopolist is different because, by definition, it does not face the competitive threat of any other firm offering a lower price. Having the flexibility to set its price wherever it wants, the monopolist sets its price to maximize profits. Under the usual assumptions of elastic demand (elastic demand means that consumers buy less at a higher price and more at a lower price), the monopolist sets a higher price resulting in lower demand, where the revenue gains are sufficient to offset the reduced demand. Because consumers have to pay a higher price and consume less they are worse off. The difference between the benefit to the monopolist and the loss to consumers is called the “net welfare loss.”

Monopolies are unstable in markets that have a competitive structure. A monopolist may exist, for example, if the monopolist was an innovator and entered the market with a product as to which it was the only offeror, but the competitive market conditions mean that others will enter charging prices less than the monopoly price and take market share away from the original monopolist. So a monopoly can be maintained only under one or both of two conditions: (1) the monopolist imposes artificial barriers to entry and is able to enforce them, or (2) the size of the market is such that at a monopoly price, the monopolist (but not new
elements of public policy. The first, deeply embedded in the rationale for public utility regulation, is that price controls should be imposed on monopolists who enjoy natural monopolies.275 By limiting monopoly pricing, the state can protect against reallocating resources from consumers to monopolists.

Second, the law can remove artificial barriers to entry. One such barrier to entry is “predatory pricing” by the monopolist. Predatory pricing signifies that a monopolist, threatened by the prospect of a new entrant, will reduce prices in the short run to a level below that at which the new entrant can earn a profit.276 A monopolist can afford to do this, either because it can forego some of its monopoly profits in the short run in order to retain its monopoly in the long run, or because it has banked enough excess monopoly profits in the past to allow it to finance a short-term loss as a good investment to increase prices later and reinstate its monopoly profits. Antitrust law developed a complex set of rules to determine when predatory pricing exists and when it should be illegal.277

Third, the law can protect against denials of access to essential facilities and services by the monopolist.278 That, essentially, is what the debate over net neutrality is all about.279

The greatest threat to enhanced social welfare resulting from the Internet’s open architecture arises when a supplier of services at one layer seeks to extend its services into other layers—in other words, to engage in vertical integration. Pursuit of this strategy benefits from discouraging competing suppliers in the layers where the vertically integrating enterprise has weaker competitive offerings. This situation often arises when the market structure of one layer is a natural monopoly, because of entrants) faces a declining cost-curve. The declining cost-curve case is called a “natural monopoly.” In such conditions, if demand increases at the monopoly price, the monopolist simply can produce more and, because its costs decline, still earn higher profits.

However, one of the central assumptions of microeconomic theory is that, at some point, costs increase with increasing production. Increased shifts must be added at higher labor costs, the price for raw materials increases, or congestion or other inefficiencies begin to increase costs per unit. When a natural monopoly exists because at the initial level of demand a monopolist faces a declining cost curve, the monopolist still confronts the threat that demand will increase to the point that its costs will increase if it produces more. At that point, there is room for new entrants because they probably can serve the increased demand at lower costs than the monopolist. See generally \textit{William J. Baumol & Alan S. Blinder, Economics: Principles and Policy} (7th ed. 1997).

275 \textit{See} Charles W. Lamden, \textit{The Place of Accounting in Price Control}, 18 ACCT. REV., Jan. 1943, at 26, 26–27.

278 \textit{See} \textit{Perritt, supra} note 73, § 2.04[B] (2011 supp.) (discussing “essential facilities doctrine” in antitrust law).

279 \textit{See infra} Part II.B.
network effects or otherwise, while the market structure of adjacent layers is inherently competitive.280

The vice when natural monopolies at one level are leveraged to create an artificial monopoly at other levels is not the natural monopoly. By definition, a natural monopoly is more efficient when it is allowed to run its course—at least until the monopolist starts extracting monopoly rents.281 Instead, the vice is the artificial exclusion of competition in adjacent layers where competition is the natural state.

Many parts of the Internet’s technologies present economies of scale. When economies of scale exist, bigger is better—or at least more efficient—even though the economies may not be strong enough to present network effects leading to natural monopoly. It may simply be that the capital cost of a cell phone site is so great that no one can make money unless he has hundreds of thousands of customers to support that site. Or, it may not be profitable to deploy DSL or fiber to the curb in a market for telephone services unless a sufficient subscriber base exists to provide a return on the substantial investment. Network effects also operate with respect to any one-stop shopping facility, such as iTunes, Amazon, or Netflix.

In these circumstances, the owner of the capital-intensive resource—or a potential investor in a new such resource—has an incentive to exclude people who do not pay. It has a concomitant incentive not to allow its competitors to get a free ride on its investment to offer competing services at prices lower than the owner must charge to recoup its investment. It is this set of circumstances that gives rise to the most ferocious legal battles over how the Internet should be regulated—the battle over competitive access to telephone infrastructure and, more recently, the battle over net neutrality.282

Three basic kinds of access denials occur. The first two are vertical, the third is horizontal. In one type of vertical denial of access, a firm with substantial market share refuses to deal with an upstream supplier because it already has arrangements with a preferred upstream supplier. An example might be a refusal by AT&T to sell cell phones made by someone other than Apple. In another type of vertical denial of access, a firm with substantial market share refuses to sell to customers competing with preferred customers. One example is a manufacturer that refuses to sell its product to discount retailers. Another is Apple’s refusal to sell iPhones that work on any network other than AT&T’s. In the horizontal context, a firm with substantial market

281 See generally United States v. Microsoft Corp., 253 F.3d 34, 50 (D.C. Cir. 2001) (expressing doubt whether traditional antitrust monopolization doctrines are appropriate “in technologically dynamic markets characterized by network effects”).

share refuses to cooperate; for example, by interconnecting with a competitor—usually a new entrant that threatens to take away market share.

Concern is growing that concentration in the telecommunications market may eviscerate the Internet’s potential to provide an infrastructure in which competition can flourish. The FCC has generally allowed concentration to increase through major telephone firm mergers, arguing that new technologies and intermodal competition will preserve competitor opportunities and consumer choices. The FCC approved two major mergers of local exchange carrier networks with long-distance networks: the merger of Verizon and MCI, and the merger of SBC and AT&T. In March 2007, a district court approved the consent decrees recommended by the Justice Department in the SBC/AT&T and Verizon/MCI mergers.

Concentration in the cable industry, like concentration in the telephone industry, is intensifying. In July 2006, the FCC approved transfer of Adelphia Communications Corporation’s assets to Time Warner and Comcast. The FCC accepted the argument that the consolidation might result in reduced competition in the market for programming, and adopted a condition that would allow programmers seeking to use commercial leased access to submit disputes about the terms of access to commercial arbitration. It also found that the possibility of uniform price increases could reduce competition. The FCC further adopted commercial arbitration as a condition to mitigate that risk and imposed detailed provisions for any arbitration proceedings in an appendix to its decision.

Empires are emerging that control backbone connectivity, but that is not all. Empires are also developing with respect to content distribution. Whether these empires pose threats to the Internet’s constitution depends on imperial business policies. One can speculate on adverse directions for evolution. For example, Google dominates the market for Internet search and for search-related advertising. Its e-mail service, Gmial, represents a rapidly growing share of the market. Its Android software for smart phones has displaced Apple’s dominance of this market. Google has also entered the hardware market. It has launched Google+, a social networking

287 Id. at 8253–54.
288 Id. at 8273.
289 Id. at 8274.
290 Id. app. B.
291 Erick Schonfeld, Gmail Grew 43 Percent Last Year. AOL Mail and Hotmail Need to Start Worrying, TECHCRUNCH (Jan. 14, 2009), http://techcrunch.com/2009/01/14/gmail-grew-43-percent-last-year-aol-mail-and-hotmail-need-to-start-worrying/.
service aimed at Facebook’s market. Suppose Google makes a business decision to discourage competition in these markets. It could make it difficult for users of Android software to connect to e-mail services other than Gmail. It could provide display and search-order preferences to advertisers who book advertising directly with Google rather than with competing ad agencies. It could make it easy for Google+ members to find new friends through their Gmail accounts, while making it more difficult for Facebook members to do the same. The result would be a market structure in which Internet users obtain a larger and larger portion of their cyberspace resources through Google rather than its competitors.

As another example, take Amazon. It is the largest e-commerce vendor. To date, Amazon has been aggressive in opening up access to competing suppliers of books and entertainment products and merchandise. When one searches for a particular type of merchandise, Amazon routinely provides links to several suppliers, including itself. It makes it easy to download Kindle books to other display devices. It facilitates access to small, independent authors and publishers of conventional books and their e-book counterparts. But suppose Amazon changed its business model. It could make it more difficult for consumers to find competitive sellers of books, video, audio entertainment or the immense variety of other goods that Amazon sells. It could eliminate the possibility of downloading Kindle books to devices other than the Kindle itself. Similar possibilities exist for the handful of large ISPs such as AT&T, Verizon, and Comcast to violate net neutrality, as considered in Part II.B.

Proprietary empires also enlarge risks of political discrimination beyond the reach of the rule of law. If the development of cloud computing induces a significant fraction of individual and institutional users to use the cloud to store their documents and other electronic assets, this will have three major effects: (1) it will increase the vulnerability of Internet users to attacks on major repositories of data, (2) it will make it easier for empires to gain new territory and make it more costly for users to

move from one empire to another, and (3) it will make it easier for governments and private institutions to eavesdrop on individual Internet activity. No longer will an eavesdropper have to gain access to data stored on a particular, individually owned device; all that will be necessary is to gain access to a particular empire in the cloud. It may make it easier to censor unpopular content.

B. Discrimination and Net Neutrality

The rise of proprietary empires in the Internet—more concretely, consolidation in the telephone and cable industries—is fueling debate in Congress and before the FCC on “net neutrality”: the fear that providers of basic infrastructure will design or program their facilities to give preferential treatment to certain suppliers or customers.

The growth of major bottlenecks in the Internet, represented by large ISPs and connection services such as AT&T and Compuserve present the threat of censorship. ISPs are under pressure to block services likely to facilitate access to content infringing copyright and to expel infringing users. YouTube is threatened with liability for not being more active in detecting and removing allegedly infringing video posts, and Craigslist is being pressured to remove its “adult services” section.

These developments not only threaten the fundamental architecture of the Internet, making the establishment of empires more likely, as considered in Part II.A,
but they also increase the possibility of pressure to discriminate against particular
groups or points of view, such as gay rights advocates or Muslims.

The debate on net neutrality implicates technological, economic, and regula-
tory issues. The technological concern arises from the way Internet routers work. A
router is a specialized computer that knows how to read the headers of Internet
packets and to handle the packets according to the Internet address of the destination
and the Internet address of the origin. A router accepts a flow of Internet packets at its
input port—a wire pair, coaxial cable, or optical fiber, any of which might be con-
nected to a wireless channel—strips off the information comprising the “envelope”
prescribed by the network communications protocol such as Ethernet, frame relay,
or asynchronous transfer mode, and examines the destination address of the Internet
packet inside. It then consults a routing table maintained in an active memory inside
the router and, based on the entry in the routing table corresponding to the destination
address, sends that Internet packet to one of two or more output ports. Each output
port on a router is connected to another router, perhaps hundreds or thousands of
miles away. The routing tables are periodically updated through specialized messages
that move through the Internet that normally are invisible to users of the Internet.

Internet packets move from origin to destination through a series of routers. These
moves typically are called “hops.” Functionally, the Internet thus can be represented
as a logical tree in which each router represents a node at which two or more choices
are available as to the path a packet follows to the next node. In theory, an arbitrarily
large and complex network can be constructed from a binary tree, signifying that each
router has only two output ports. In practice, routers handling substantial amounts of
traffic have more than two output ports.

The links in such a tree represent the communications channels connecting the
routers. As explained in Part I.A, the Internet is indifferent as to the physical, prop-
agation, or modulation techniques used to carry Internet traffic. Accordingly, one
link may be a dial-up telephone line, another link may be a hard-wired wire pair,
another link may be an optical fiber capable of moving gigabits per second.

The decision that each router makes with respect to each Internet packet is
roughly analogous to the decision that an airline passenger makes in advance with
respect to changing planes at a hub airport. Usually, more than one route is available
from a particular origin to a particular destination, just as more than one airline route
typically is available from one airport to a destination airport. The passenger arrives
on one flight at a particular gate—representing an input port—and may leave on any
one of several flights departing from other gates, representing output ports. Hub
airports, of course, unlike Internet routers, have dozens or hundreds of input ports
(gates) and dozens or hundreds of output ports (gates). Moreover, the route followed
by an airline traveler, unlike the route followed by an Internet packet, is determined
in advance through the reservation and ticketing processes. Nevertheless, there are
decisions made at airports that resemble decisions made in routers. An airline pas-
senger ticket for a flight involving changes of planes specifies the input flight, and
the airline dispatch operation determines the input port (gate) at which that flight arrives. The passenger ticket only defines the departure flight; it does not define the gate. The passenger, much like the router, must consult a display board or an airline representative to determine which output port (gate) corresponds to the departure flight number. That corresponds to a router looking up the appropriate output port corresponding to a destination address in its routing table.

Multiple strategies exist for routing packets over the Internet. For example, computer scientists and designers of Internet traffic patterns sometimes deploy routing strategies that involve the fewest hops. Other times, they employ strategies that select the path through the Internet with the highest bandwidth. Routing strategies also can be chosen based on economic decisions.307 These choices are reflected in the routing tables of the routers at particular points in the Internet that have routing tables appropriate to implement the strategy.

The economic incentives are strong for providers of high-bandwidth IP services in a duopolistic market to discriminate in favor of their own offerings or to strike deals with independent suppliers that give them traffic handling preferences.308

The result may not be transparent to consumers. Consumers will pay more money for higher bandwidth connections in their homes and offices, but they will not be forced to pay surcharges for access to disfavored services. Instead the providers of the disfavored services will have to pay more for their connectivity. Because some will not pay, consumers will see worse performance from the disfavored services.309

If things evolve this way, it will be difficult to organize a political coalition to force net neutrality obligations into law.

Many advocates of the Internet’s potential to form the basic national infrastructure for communications, information dissemination, and entertainment are concerned about the adverse effects of growing concentration in the provision of Internet connectivity. This concern has been focused through a public debate on “net neutrality.” To understand the net neutrality debate, which constitutes the major current public policy debate pitting communications service providers against Internet users, one can benefit from a review of two basic realities, the first dealing with technology and the second dealing with economics.

No one owns the entire Internet. Instead, the Internet is a collection of concepts, technical protocols and format standards that permit thousands—indeed millions—of owners of communications channels and routers to exchange traffic with each other. Because Internet user preferences, functions, and wealth differ, some users are willing to pay more to use the Internet than others. The owners of the hardware and computer programs comprising the routers and communications links thus have an incentive to engage in price discrimination—to charge what the traffic will bear. The owner of Internet assets can determine the identity of senders and recipients of

307 Perritt, supra note 56, at 217.
308 Id. at 214.
309 Id.
Internet traffic based on the origin and destination addresses of the Internet packets moving through their assets. They could therefore, if they wish, set up their routing tables according to the revenue likely to be obtainable from particular users.

The entrepreneur can program his routers to reject low-priced traffic. For example, he can program his router exchanging traffic with end users so that traffic destined for a high-priced provider is routed to the high-capacity communication link connected to a particular output port, while all other traffic is routed to another output port connected to a lower-capacity line. He can program his other router, located further inside the cloud, similarly to route only those packets to or from high-priced subscribers to high-capacity links and to route all others to lower-capacity links. The result is that users, whether they are consumers or providers, get better Internet connectivity if they pay more money, while those paying less money get worse Internet connectivity. The same techniques can be used to discriminate against competitors as well as to discriminate based on the price. For example, the owner of a router may set up the routing tables so that packets addressed to a competing service provider—say a provider of VoIP services—simply are thrown away while packets addressed to the owner’s own VoIP service are passed along to a high-capacity connection carrying that provider’s VoIP traffic. Because the router throws away packets addressed to the competitor, the end user experiences an inability to connect to any VoIP provider except that provided by the owner of the router.

This is exactly what Madison River Communications, LLC did. Madison River is an independent provider of telecommunications services to home subscribers, among others, in North Carolina. It programmed its equipment, presumably routers connected to DSL subscriber lines, to block traffic destined for certain VoIP traffic. It is not entirely clear from the official record made public whether Madison River blocked all VoIP packets or only those intended for VoIP providers competing with Madison’s own VoIP service. In any event, the FCC notified Madison that it was investigating complaints about its blocking practices and in March 2005, entered into a consent decree, fining Madison River $15,000 and barring it for thirty months from “block[ing] ports used for VoIP applications or otherwise prevent[ing] customers from using VoIP applications.” It does not matter whether Madison River was programming its routers to throw away all VoIP traffic or only VoIP traffic not addressed to its own VoIP servers; the point is that it was using the Internet’s capacity to discriminate against disfavored traffic.

Alarmed by risk of such discrimination developments, commercial entities, including independent VoIP providers and large-volume information enterprises

310 Id. at 217–18.
312 Id.
313 Id. at 4297, 4299.
314 See Reconsidering Our Communications Laws: Ensuring Competition and Innovation: Hearing Before the S. Comm. on the Judiciary, supra note 64.
such as Google and Yahoo!, urged Congress to enact new legislation that would ensure net neutrality. Net neutrality would disallow discrimination among consumers and providers of Internet traffic, although it would allow pricing based on the bandwidth of connections—at least price variations for bandwidth provided consumers. The House of Representatives responded to their concerns. H.R. 5417 would have amended the Clayton Act by adding a section prohibiting any broadband network provider from offering its network services on discriminatory terms and conditions, refusing to interconnect its facilities with the facilities of other providers of broadband network services, blocking traffic associated with any lawful content applications or services over the Internet, charging fees to avoid discrimination or blocking, and excluding hardware that does not physically damage or materially degrade other utilization of the network. Hearings were held by both House and Senate committees considering this and similar legislation.

Consumer groups testified in favor of the legislation, in part because it would ensure the availability of competing providers of broadband video services. Opponents of the legislation argued that it was premature and inconsistent with the successful hands-off approach to Internet regulation that had led to massive innovation and investment in the Internet. While some of these opponents were willing to accept legislation requiring studies of net neutrality, or relatively mild provisions, they opposed stronger provisions advocated by those most concerned about net neutrality. They argued, however, that going beyond those basic investigations or principles represented “an effort to safeguard against a problem that, at this point and in the foreseeable future, is nonexistent.” Others argued that the FCC’s existing Internet principles, which the Commission had incorporated into merger approvals, combined with

315 Perritt, supra note 56, at 218–19.
321 See id. at 26 (prepared statement of Dave McCurdy, President, CEO, Elec. Indus. Alliance).
322 Id. at 25–26 (testifying favorably about “net neutrality” study presently included in S. 2868, and also acquiescing in net neutrality provision in H.R. 5252).
323 Id. at 30.
324 The “conditions” appendix of the FCC’s approval of the Verizon/MCI merger includes a section entitled “Net Neutrality,” which obligated Verizon/MCI for two years after the merger date to “conduct business in a manner that comports with the principles set forth in the FCC’s Policy Statement, issued September 23, 2005 (FCC 05-151).” In re Verizon Commc’n Inc. and MCI, Inc., 20 FCC Red. 18433, 18509 (2005). Identical language appears in the
market forces, adequately addressed the problem. They argued that more prescriptive legislation would discourage investment in widening the lanes on the Internet highway to avoid traffic jams, which required investment, which in turn, required expectations of an adequate rate of return.

The bill reported by the Senate Commerce Committee did not include proposed amendments to strengthen net neutrality provisions. Chairman Ted Stevens said, “We still have a massive disagreement over net neutrality. I still remain convinced that net neutrality is not something that we can define. We haven’t seen it anywhere here or in the world so far and that the World Wide Web is still open [sic].” The House, on the other hand reported H.R. 5417, with stronger net neutrality provisions.

In the Matters of Formal Complaint of Free Press and Public Knowledge Against Comcast Corp. for Secretly Degrading Peer-to-Peer Applications involved a challenge to Comcast’s practice of throttling peer-to-peer traffic, specifically BitTorrent, used by its subscribers to share files. On the merits, the FCC found:

The record leaves no doubt that Comcast’s network management practices discriminate among applications and protocols rather than treating all equally. . . . Comcast has deployed equipment across its networks that monitors its customers’ TCP connections using deep packet inspection to determine how many connections are peer-to-peer uploads. When Comcast judges that there are too many peer-to-peer uploads in a given area, Comcast’s equipment terminates some of those connections by sending RST packets. In other words, Comcast determines how it will route some connections based not on their destinations but on their contents; in laymen’s terms, Comcast opens its customers’ mail because it wants to deliver mail not based on the address or type of stamp on the envelope but on the type of letter contained therein. Furthermore,

325 Hearing, supra note 320, at 11–12 (prepared statement of John Rutledge, on behalf of the U.S. Chamber of Commerce arguing that market forces are adequate and there is no need for a net neutrality law).

326 Id. at 12.

Comcast’s interruption of customers’ uploads by definition interferes with Internet users’ downloads since “any end-point that is uploading has a corresponding end-point that is downloading.” Also, because Comcast’s method, sending RST packets to both sides of a TCP connection, is the same method computers connected via TCP use to communicate with each other, a customer has no way of knowing when Comcast (rather than its peer) terminates a connection.330

The FCC found that these practices were not narrowly tailored to easing network congestion and that Comcast had other, nondiscriminatory, methods for managing network congestion.331

Because Comcast did not establish that the challenged procedures were reasonable network management practices,

Comcast’s interference with peer-to-peer protocols . . . contravene[s] the federal policy of “promot[ing] the continued development of the Internet” because that interference impedes consumers from “run[ning] applications . . . of their choice,” rather than those favored by Comcast, and that interference limits consumers’ ability to “access the lawful Internet content of their choice,” including the video programming made available by vendors like Vuze. Comcast’s selective interference also appears to discourage the “development of technologies”—such as peer-to-peer technologies—that “maximize user control over what information is received by individuals . . . who use the Internet” because that interference (again) impedes consumers from “run[ning] applications . . . of their choice,” rather than those favored by Comcast.332

The Commission responded to Comcast’s challenge “that the Commission cannot exercise jurisdiction over its interference with peer-to-peer TCP connections . . . because such authority must be ‘ancillary to something, but here it is not clear what that something might be’”333 by pointing to sections 1 (goal of making communications service available), 201 (common carrier practices must be just and reasonable), 706 (deployment of advanced telecommunications services), 256 (promotion of non-discriminatory access to public telecommunications networks), 257 (elimination of market-entry barriers for entrepreneurs and small businesses), and 601

330 Id. at 13050–51 (footnotes omitted).
331 Id. at 13056–58 (footnotes omitted).
332 Id. at 13052 (footnotes omitted).
333 Id. at 13035.
(assuring that cable providers offer widest possible diversity of services) of the Telecommunications Act.\footnote{Id. at 13036–37.}

In Comcast Corp. v. FCC,\footnote{600 F.3d 642 (D.C. Cir. 2010).} the Court of Appeals for the D.C. Circuit invalidated the FCC’s Comcast order. Noting that the FCC had found “that cable Internet service is neither a ‘telecommunications service’ covered by Title II of the Communications Act nor a ‘cable service’ covered by Title VI,”\footnote{Id. at 645 (citing In re High-Speed Access to the Internet Over Cable and Other Facilities, 17 FCC Red. 4798, 4802 ¶ 7 (2002), aff’d, Nat’l Cable & Telecomms. Ass’n v. Brand X Internet Servs., 545 U.S. 967 (2005)).} the court found that the Commission lacked ancillary authority under section 4(i) of the Act.\footnote{47 U.S.C. § 154(i) (2006).} Applying its established two-part test—that ancillary jurisdiction exists only when: “(1) the Commission’s general jurisdictional grant under Title I [of the Communications Act] covers the regulated subject and (2) the regulations are reasonably ancillary to the Commission’s effective performance of its statutorily mandated responsibilities,”\footnote{Comcast Corp., 600 F.3d at 646 (quoting Am. Library Ass’n v. FCC, 406 F.3d 689 (D.C. Cir. 2005)).} it found that “[b]ecause the Commission has failed to tie its assertion of ancillary authority over Comcast’s Internet service to any ‘statutorily mandated responsibility,’” the order was invalid.\footnote{Id. at 661 (quoting Am. Library, 406 F.3d at 692).}

The court rejected the FCC’s argument that the Supreme Court recognized its authority to “require cable companies to allow independent ISPs access to their facilities’ pursuant to its ancillary authority, rather than using Title II.”\footnote{Id. at 649 (quoting Brand X, 545 U.S. at 1002).} It found that “policy statements alone” cannot satisfy the requirement for a statutory mandate to serve as the foundation for “ancillary jurisdiction.”\footnote{Id. at 654.} The court rejected the FCC’s argument that it had authority over broadband under section 706 and under section 257.\footnote{Id. at 658–59.}

In late 2010, the Commission responded to the D.C. Circuit by revising its net neutrality rules prohibiting broadband Internet access providers from discriminating against or blocking traffic.\footnote{In re Preserving the Open Internet Broadband Industry Practices, GN Docket No. 09-191, FCC 10-201 (Dec. 23, 2010).} It addressed the court of appeals’ ruling that it lacked jurisdiction by reiterating its authority under section 706 of the Act,\footnote{Id. ¶¶ 117–23.} its authority to promote competition and investment in, and to protect end users of, voice, video, and audio services,\footnote{Id. ¶ 124.} its responsibilities under Title II to regulate VoIP
services; its authority under Titles III and VI of the Act to promote orderly development of local television broadcasting and MVPD programming, and its authority to protect the public interest through spectrum licensing.

Verizon and others petitioned the D.C. Circuit for review and sought assignment of the case to the same panel that ruled against the earlier FCC net neutrality order. The court of appeals denied the panel-assignment request on February 2, 2011.

The FCC also could have responded to the D.C. Circuit’s decision by reclassifying Internet access as common-carriage—one of the regulatory options identified as the National Broadband Plan. If the Commission were to take that approach, it would have to reverse its earlier decisions that Internet access over cable and telephone lines does not constitute “telecommunications” service. Administrative agencies are entitled to change earlier decisions, but they must justify such changes in policy consistent with the Administrative Procedure Act’s prohibition of arbitrary and capricious decision making.

C. Eclipse of the Public Domain for Knowledge and Art

The Internet has made it possible for artists of all kinds to reach a global population of potential audiences by reducing barriers to entry. The frontier of innovation involves developing business models for intermediaries, and mitigating transaction costs for licensing preexisting content. As Larry Lessig has observed, however, “just as a free market is perverted if its property becomes feudal, so too can a free culture be queered by extremism in the property rights that define it.”

It was clear at the time of the Harvard Conference that the growth of the Internet as a backbone for commerce, social interaction, and politics would involve the emergence of new intermediaries. Twenty years later, the Internet revolution is manifested as much by new rapidly growing Internet intermediaries who are supplanting the role

347 Id. ¶¶ 125–26.
348 Id. ¶¶ 127–32.
349 Id. ¶¶ 133–35.
352 See e.g., Motor Vehicle Mfrs. Ass’n v. State Farm Mut. Auto. Ins. Co., 463 U.S. 29, 42 (1983) (noting that “an agency changing its course by rescinding a rule is obligated to supply a reasoned analysis for the change” and ultimately invalidating Department of Transportation’s change in seatbelt rule).
353 Henry H. Perritt, Jr., New Business Models for Music, 18 VILL. SPORTS & ENT. L.J. 63 (2011) (arguing that new Internet technologies are facilitating access by low-budget musicians); see Perritt, supra note 56 (arguing the same for moviemakers).
of established institutions: Amazon at the expense of Borders, iTunes at the expense of Tower Records, Netflix at the expense of Blockbuster. This part of the revolution continues and it is uncertain which new intermediation ideas will prove to be the “next big thing,” and which brick and mortar establishments will fall victim.\footnote{See Perritt, \textit{supra} note 353, at 155–62 (explaining the need for intermediaries in markets for music and arguing that new intermediaries are arising to perform the function of institutions locked into obsolete capital).}

As this disruptive change in intermediation continues, the threatened enterprises are employing a variety of measures to thwart the emergence of new Internet-based intermediaries. As Larry Lessig said, “an environment designed to enable the new is being transformed to protect the old.”\footnote{LAWRENCE LESSIG, \textit{The Future of Ideas: The Fate of the Commons in a Connected World} 6 (2001).} Copyright enforcement is increasingly taking the form of closing off access.

The technology-driven revolution in the popular music industry is a good example of the threat.\footnote{Perritt, \textit{supra} note 353, at 65.} The major labels will not survive in anything like their previous forms. CDs are dead as a distribution medium. Barriers to entry have declined dramatically as the costs of producing top-quality recordings have dropped by a couple of orders of magnitude. Portable music players, such as smartphones, permit consumers to listen to music all the time and this enormously increases the potential demand for music.

“The increased competition and the demise of traditional gatekeepers signal a sharp reduction in prices—approaching zero—for recorded music.”\footnote{Id. at 66.} Prices for recorded music approaching zero also means that copyright is becoming irrelevant except at the margins of the “new order.”\footnote{Id. at 95.} “As prices for recorded music decline . . . toward zero [with costs] . . . [t]he costs of copyright enforcement exceed the benefits.”\footnote{Id.} The result is nearly one in which no one is willing to pay (much) for recorded music.\footnote{Id. at 66.} “Technology makes it impossible to enforce copyright, but it does not matter, because no one would pay for music from either the originator or a pirate. A pirate cannot construct a viable business model.”\footnote{Id.}

Increased supply and demand result in higher search costs. Musicians and their potential fans must be able to find each other. Someone has to perform the matchmaking function formerly performed by the major labels and the radio station chains. Innovation and experimentation will increase as new kinds of intermediaries seek the best way to connect musicians with their potential fans. A handful of these will become the dominant gatekeepers.\footnote{Id.}
The emerging intermediaries, necessary to perform the matchmaking function, will not work for free. 365 Even if a business model is unnecessary for the musicians themselves, it is necessary for the intermediaries. 366 Unless such a business model emerges, the new music marketplace will be one in which hundreds of thousands of artists making very good music go essentially unnoticed by those who would enjoy their music. 367 For viable business models to exist, entrepreneurs must creatively monetize access to the celebrity, and also develop technologies for classifying music to reduce consumer search costs. 368 Monetization will rely less on copyright and more on behaviorally targeted advertising and social networking.

“As with popular music, new technologies of video entertainment have opened the gates to the marketplace for independent (‘indie’) artists and producers, eroding the control of traditional gatekeepers.” 369 “[T]echnology is causing the collapse of boundaries separating movies, television, the Internet, and video games—the traditionally separate categories of video entertainment.” 370

Digital technologies are now gradually dominating moviemaking, replacing film. Production activities that used to be defined by a medium or channel of distribution now easily cover several. 371 “The melding of these traditionally separate categories requires rethinking the economics, business strategies, and legal frameworks that shape video entertainment.” 372

Collapsing boundaries and reduced barriers mean a more efficient and competitive industry, with a wider variety of choices for consumers. Large capital costs for production of full-motion video works can be spread over more product lines. Migration of artists and technologists from one industry category into others will disrupt old ways of doing things and reduce capital requirements. 373

Serialization 374 may make a comeback because it can reduce the capital costs. Moviemakers can build a fan base and a pool of potential investors with an initial, relatively low cost pilot episode, and then build a revenue stream over time with future episodes. When a work is serialized, “the economic value of the creative effort is more in the characters than in the specific details of a single production. Accordingly, the copyright battleground will shift to protection of characters and basic story

365 Id. at 175.
366 Id. at 66. The point is not that musicians do not deserve to make money; the point is that they will make music whether or not they make money.
367 Id. at 66–67.
368 Id. at 68.
369 Perritt, supra note 56, at 108.
370 Id. at 107.
371 Id. at 108.
372 Id. at 107.
373 Id. at 108.
374 “[S]erialization has a long pedigree in popular culture, used by Charles Dickens to bring his novels within the reach of mass audiences.” Id. at 110.
features" The law will have to work harder to allow authors, such as fan-fiction writers, to build new narratives on the work by creators of the originals.376

Crowd sourcing is another possibility for allowing larger numbers of people to collaborate on the creation, production, distribution, marketing, and financing. When collaboration increases, the law of joint authorship becomes more important. Larger creative teams puts stress on default rules for apportioning ownership of intellectual property.377

In these new, expanded markets, however, new entrants will need to license copyrighted music, characters, storylines, or scenes that they incorporate into new movies. This will increase the already-daunting transaction costs for licensing rights.378

New public and private law mechanisms are needed to make the market function more efficiently, by making it easier for creators of new works to (1) find the owners of preexisting content, and (2) overcome other barriers to obtaining licenses, such as strategic behavior, irrational protection of entrenched bureaucracies, and obsolete, embedded capital.379

As the technology-driven revolution continues in the entertainment industry, one of the most dangerous threats to the sustainability of the Internet’s open character arises: overreaching by owners of intellectual property—particularly ownership of copyright in entertainment works.380 Rightsholders use civil subpoenas to obtain private information about network users and then file lawsuits by the tens of thousands. They pressure ISPs to discriminate among users of their connection services. That pressure is what triggered the net neutrality debate. They hire contractors to extort settlements by those they accuse of infringement. Copyright law threatens the healthy evolution of the Internet because of expansion of copyright monopolies, abuse of civil litigation, and legislative capture.381

1. Expansion of Copyright Monopolies

Expansion of protection for rightsholders and diminished scope for traditional privileges, such as that available under Fair Use, stifles creative innovation because

375 Id.
376 Id.
377 Id.
378 Id.
379 Id.
380 See generally LESSIG, supra note 354 (arguing that copyright law has been used to stifle innovation); LESSIG, supra note 357 (arguing that changes in copyright and other forms of intellectual property protection have the potential to choke off publicly held material, which constitute an intellectual commons).
it makes it easier for established enterprises with an IP portfolio to discourage or block new creative effort that competes with existing works. Two instances of such expansion involve extending copyright to protect characters and plots, and extension of the term of the copyright monopoly.

One area of expansion extends copyright protection to plots and characters. Protection of characters and the derivative work right have been explored in recent litigation involving fan fiction. Two recent cases involving fan fiction used Judge Hand’s abstractions test to afford copyright protection to fictional characters; one involved Holden Caulfield from *Catcher in the Rye*, while the second involved the *Harry Potter* series. "In *Salinger v. Colting*," the district court granted a preliminary injunction barring publication of an unauthorized sequel to *Catcher in the Rye*, finding probability of success on [a] prima-face copyright infringement [claim] and unlikelihood of success on a fair use defense." The court concluded that the Holden Caulfield character was “distinctively delineated” in *Catcher in the Rye* and therefore qualified for copyright protection.

382 Perritt, supra note 377, at 15.

“Fan fiction” refers to a phenomenon in which persons other than the author of a work write their own stories about characters created by the original author, usually making no pretense that the characters are different. Fan fiction is an exploding genre, fueled by the ease with which new works by unknown authors can be disseminated on the Internet. “Mary Sue fiction” creates stories in which minor characters from earlier works star in new works or in which entirely new characters are inserted. “Slash fiction” takes male characters from earlier works and puts them in gay contexts. “Real person slash fiction” takes real people and puts them in stories involving gay relationships or encounters.

384 641 F. Supp. 2d at 250, vacated, 607 F.3d 68, 83 (2d Cir. 2010) (holding that district court erroneously presumed irreparable injury in granting preliminary injunction under eBay, Inc. v. MercExchange, LLC, 547 U.S. 388 (2006)).

385 Perritt, supra note 377, at 15.

386 641 F. Supp. 2d at 254 (quoting 2 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT § 2.12 (2009)) (explaining the standard for protection of fictional characters).
The second fan fiction case, *Warner Bros. Entertainment Inc. v. RDR Books*, involved a claim of copyright infringement by J.K. Rowling, the author of the *Harry Potter* series, against the developers and publishers of a “Harry Potter Lexicon,” which provided supplementary information on the characters and events in the *Harry Potter* books. The district court found that the Lexicon contained “direct quotations or paraphrases, plot details, or summaries of scenes from one or more of the *Harry Potter* novels.” The defendant copied fictional facts invented by Rowling, “such as the attributes of imaginary creatures and objects, the traits and undertakings of major and minor characters, and the events surrounding them.” “[S]uch invented facts constitute[d] creative expression protected by copyright,” according to the court.

Another defacto expansion of copyright is exemplified by the rise in right-of-publicity claims under state law. Many such claims should be found to be preempted by the federal Copyright Act.

The Copyright Extension Act is another example of an effort by established rightsholders to extend their monopolies. In *Eldred v. Ashcroft*, Justice Stevens’s dissent criticized the abandonment by the Court of its responsibility to protect the public interest in free access to the products of artistic genius. Justice Breyer’s dissent characterized the extension as making the copyright term virtually perpetual, in violation of the constitutional requirement that it be limited, and that granting the extended term to “heirs, estates, and corporate successors” of authors vitiates the constitutionally required purpose of promoting “Science”—indeed it inhibited the progress of science by interposing obstacles to access to copyrighted works.

2. Abuse of Civil Litigation Process

As new technologies have stressed traditional business models, aggressive litigation by traditional rightsholders has materialized, as evidenced by analysis
throughout this Part. The enforcement methods used by rightsholders threatens core
Internet characteristics when rightsholders mobilize legal or economic pressure on
intermediaries such as ISPs to block traffic that facilitates infringing activities—as
defined by rightsholders, who naturally take an expansive view of what constitutes
infringement of copyright, and through their litigation strategies.

I have been an occasional participant in the Electronic Frontier Foundation’s
efforts to block abuse of civil process. The Recording Industry Association of
American (RIAA)’s litigation typically proceeded like this: The RIAA would serve
basketfuls of subpoenas on ISPs, demanding personally identifying information for
individuals linked to IP addresses that the RIAA believed to be involved in exchanging
unlicensed music files. Once it obtained the information, it transferred it to contrac-
tors who would send demand letters threatening litigation and emphasizing statutory
damages running into the hundreds of thousands or millions of dollars. The contrac-
tor then would offer to settle for what it estimated was in the target’s bank account.
Most recipients, frightened, settled. This organized extortion has mostly survived
challenges, although grudgingly, the courts are placing limitations on it. In Lahiri v.
Universal Music & Video Distribution Corp., the court of appeals affirmed an award
of $247,397.28 in attorneys’ fees and $10,808.76 in costs, under 28 U.S.C. § 1927,
against an attorney who represented an individual who maintained frivolous copy-
right infringement actions.

In Capitol Records, Inc. v. Foster, the district court awarded attorneys’ fees
to a defendant who had been sued for alleged infringement of musical works owned
by the plaintiff occurring through her Internet account. The court found that:

The plaintiffs failed to allege any facts in their complaint that
would support Ms. Foster’s secondary copyright infringement
liability. The complaint is devoid of any suggestion that Ms.
Foster knew third parties were using her account to infringe the
plaintiffs’ copyrights or that she substantially participated in
any infringing activities. Also absent from the complaint is any
allegation that Ms. Foster profited from a direct infringement.

397 See supra Part II.B (discussing net neutrality).
398 See, e.g., Facebook Plaintiffs Seek to Consolidate Tracking Cookie Cases in California,
seek-to-consolidate-tracking-cookie-cases-in-california-retain-professor-of-law-and-former
399 See Henry H. Perritt, Jr., Music Markets and Mythologies, 9 J. MARSHALL REV. INTELL.
PROP. L. 831, 833 (2010).
400 606 F.3d 1216 (9th Cir. 2010).
401 Id. at 1218, 1223.
403 Id. at *6.
Additionally, neither the parties’ submissions nor the Court’s own research has revealed any case holding the mere owner of an Internet account contributorily or vicariously liable for the infringing activities of third persons.404

Moreover, the court questioned the good faith of the plaintiffs, finding that it appeared that the “plaintiffs initiated the secondary infringement claims to press Ms. Foster into settlement after they had ceased to believe that she was [the] direct or ‘primary’ infringer.”405 The evidence indicated that the defendant’s estranged husband or her adult daughter may have been responsible for the alleged infringement.406

In a decision significant for a broad category of disputes over “theft” of protected signals or copyrighted content, the Court of Appeals for the Ninth Circuit affirmed dismissal of a Racketeer Influenced and Corrupt Organizations Act (RICO) action against a satellite television broadcaster.407 Plaintiffs alleged that the broadcaster sent more than 100,000 letters to purchasers of satellite-signal decryption equipment, threatening criminal prosecution and civil litigation unless the recipients paid thousands of dollars to settle claims that they unlawfully intercepted and viewed encrypted satellite television broadcasts.408 The suit claimed that the broadcasters made no attempt to discern whether recipients of the demand letters were actually engaged in illegal conduct, and telephone calls by the recipients protesting their innocence were rebuffed with renewed demands for payment of money to settle the claims; therefore, the pattern of sending the letters constituted extortion because they induced fear, made unsupportable factual allegations, and misstated the law, thus constituting fraud.409

In *Recording Industry Ass’n of America, Inc. v. Verizon Internet Services, Inc.*, the Court of Appeals for the D.C. Circuit reversed the district court. The court avoided constitutional challenges to the DMCA subpoena provision411 and held that § 512(h) of the statute did not authorize subpoenas compelling an ISP to disclose information as to which the “ISP act[s] only as a conduit for data transferred between two internet users, such as persons sending and receiving e-mail or, as in this case, sharing P2P files.”412

Another type of abuse of process by rightsholders involves frivolous takedown notices under the DMCA. Frivolous DMCA takedown notices can inflict serious

404 *Id.* at *3.
405 *Id.* at *4.
406 *Id.* at *1.
408 *Id.* at 925–26, 942.
409 *Id.* at 939–40 (characterizing claims by plaintiffs).
410 351 F.3d 1229 (D.C. Cir. 2003).
412 *Recording Indus. Ass’n of Am.*, 351 F.3d at 1233.
harm on persons denied access to e-commerce as a result. The DMCA provides a remedy for such notices.

In Design Furnishings, Inc. v. Zen Path, LLC, the district court preliminarily enjoined a furniture designer from submitting DMCA takedown notices to eBay. The defendant claimed that the plaintiff’s outdoor patio furniture infringed on her designs, although the Copyright Office had denied defendant’s copyright application. The court began with the proposition that:

The DMCA provides that “[a]ny person who knowingly materially misrepresents under this section . . . that material or activity is infringing . . . shall be liable for any damages . . . incurred by the alleged infringer . . . who is injured by such misrepresentation, as the result of the service provider . . . removing or disabling access to the material or activity claimed to be infringing”

The court found that the defendant’s furniture was not likely entitled to copyright protection, and found the “knowingly misrepresents” element satisfied by the defendant’s failure to respond to the plaintiff’s demand that it prove its intellectual property rights—three months before the defendant even applied for a copyright registration.

The court found “irreparable harm,” although damages alone are usually insufficient:

[T]he court concludes that, if defendant continues to submit notices of copyright infringement to eBay, it is likely that eBay would terminate listings, temporarily restrict plaintiff from selling on one or both of its accounts, or suspend or terminate plaintiff’s accounts. eBay’s responses to defendant’s notices would likely deter prospective customers and adversely affect plaintiff’s reputation and goodwill on a web site from which it generates 95 percent of its revenues. Plaintiff’s accounts’ policy violation ratings would also likely decrease if plaintiff continues to sell the furniture and defendant continues to submit notices to eBay. The decrease in the policy violation ratings would also cause irreparable harm.

414 See § 512 (g)(3) (explaining the counter notification mechanism).
416 Id. at *2.
417 Id. at *4 (quoting § 512(f)).
418 Id. at *5–6.
419 Id. at *7 (citation omitted).
3. Legislative Capture

The likelihood of effective legislative action to redress the balance between new creativity and the property rights of past creators is small because of legislative capture by the established interests who oppose innovation and competition. The legislative process leading up to enactment of the DCMA\(^{420}\) reflects one of the political realities of copyright policy making: when rightsholders were unable to persuade Congress to enact their legislative priorities, they went to international treaty organizations, drafted treaty language that was adopted, and then returned to Congress, saying, in effect, “You have to enact legislation; it’s the obligation of the United States under international law.”\(^{421}\) The ensuing legislative process also provided an opportunity to amend copyright law in other respects as well. The political power of Walt Disney Company, other movie studios, and record labels makes any effort to reform copyright law legislatively perilous.\(^{422}\)

D. Behaviorally Targeted Advertising

Behaviorally targeted advertising offers advantages to both advertisers and consumers. Advertisers need not pay high prices for undifferentiated access to large numbers of potential customers through television, print, or billboard advertising. Instead they can pay, often only if the target looks at (clicks on) the ad, for advertisements targeted narrowly to persons likely to have a propensity to purchase their products.\(^{423}\) Consumers see only—or mostly—advertisements aligned with their interests. Behaviorally targeted advertising is possible only by using large stores of information about the Internet behavior of millions of consumers.

E-commerce is well established. Early concerns about payment systems, order fulfillment, and trust are but distant memories. Big e-commerce sites, such as Amazon and eBay, make it easy for small entrepreneurs to reach a global customer base.\(^{424}\)

\(^{421}\) I participated in discussions in the Clinton White House about how to rein in Bruce Lehman, Under Secretary of Commerce for Intellectual Property and Commissioner of Patents and Copyrights, who was perceived as pursuing expansion of copyright in international negotiations.

\(^{422}\) See generally LESSIG, supra note 357, at 11 (describing the copyright wars as being about basic American values, necessitating a balance between property interests and the opportunity for creators to build on the past).

\(^{423}\) See Perritt, supra note 398, at 852.

E-commerce exhibits a wide variety of business models. Sellers of information content have tried subscription models, similar to that used by cable television services. Many others, such as portals providing indexing and pointers value, used an advertising model like that originally employed by newspapers and television and radio broadcasting. Still others charge a fee for each sale, resembling the business model long used by brokers. Both the advertising and the data-collection models benefit from giving content away for free. They are thus the most interesting for the future of e-commerce, in an environment in which consumers are accustomed to access without payment, fueled by the large number of providers who are willing to volunteer their services and give away the fruits of their services, as on most blogs in many collaborative offerings, such as Wikipedia.

The technology of the Internet permits many of these business models to be combined. For example, advertisements can be “clickable,” signifying that one may not only read the advertisement, but also click on the image of the advertisement and automatically be connected to the advertiser’s website. This possibility enables those selling advertising to charge not only for ad placement, but also for user clicks. Some e-mail services are free to consumers who agree to receive graphical display ads with their email. Consumers also must agree to the release of personal information that they supply with their subscription applications to the advertisers.

The central role of advertising in most business models has accelerated the use of behaviorally targeted advertising. Providers of content and value-added features can collect data about the behavior and interests of people who access their services, and then sell that data. The value of such consumer transaction data is in helping product suppliers and marketing personnel to target advertising and direct mail solicitation through conventional media much more narrowly. It also benefits consumers because they are more likely to get advertisements that they are interested in, similar to Amazon’s and Netflix’s “recommendations.” Obviously, this opportunity for selling and using data raises major personal privacy concerns. The controversy is likely

to grow over private collection and use of personal data, although the more significant threat is that the government will get access to the information, if it is collected.

If the law impedes private-sector use of personal data for behaviorally targeted advertising, it will discourage one of the most promising possibilities for providing revenue to replace that lost by over-expansive definitions, or over-aggressive enforcement, of intellectual property rights. On the other hand, the law should be vigilant in blocking the government from spying on its citizens by easy access to the store of personal data.

E. Cybersecurity

The Internet is a powerful tool for spying, and an appealing target for criminals, vandals, and terrorists. How the law limits the tools and protects the targets will have a powerful effect on the future of the Internet.

1. Police States, Cyberactivism and Embargos

The Internet makes it more difficult for totalitarian regimes to control their populations, but it also makes it easier for them to spy on their populations. The Arab Spring demonstrated that insurgents can use a variety of tools, many of them depending on Internet connectivity, to communicate plans and coordinate activities to circumvent governmental efforts to crush dissent.430 But it also demonstrated the fallacy of the belief that the Internet cannot be shut down by the government. The regimes in Egypt, Lybia, Iran, and Syria succeeded, when political crises bloomed, in disabling Internet connectivity within their territories.431 As intelligence agencies get more sophisticated, they can monitor Internet trails, providing better intelligence on the activities of dissidents. Traffic analysis, even without access to communications content, can reveal the identity of leaders, their whereabouts, and their plans.

2. Power of Traffic Analysis

Transactional data about communications, not involving access to content, enjoy a less protected position than content in the combinations of legal controls adopted by Congress. Less protection for such data flows from the reasoning of the Smith

case—432—that little expectation of privacy for such data exists because the data are disclosed to and used by third-party service providers. Even if that proposition is correct for dialed telephone numbers, it is not true for the inferences that may be drawn from large quantities of data about patterns of communication available from modern telecommunications networks. Traffic analysis of IP packets to and from a particular target can reveal a blueprint of the target’s human associations. It can reveal subject matter interests through analysis of web browsing. Analysis of geographic information from cell phone connections can detail target movements, minute-by-minute.433

Advances in technology facilitate such traffic analysis because they facilitate acquisition of transactional data, as from IP packet headers, and they also facilitate machine analysis of patterns revealed by the acquired data. In many cases, traffic analysis may actually be more valuable to law enforcement and intelligence agencies than the content of a handful of messages. Traffic analysis may also be more revealing about the private conduct and thoughts of a target than content.

Suppose a criminal intelligence agency acquires information about every cell phone call made or received by a target for a period of six months. Through relatively inexpensive and widely available techniques, the agency can collect information on the date and time of every call made or received and the other telephone number to or from which a call is attempted or established. Call-duration data is also available. By analyzing the patterns of cell phone communication by the target, the monitoring agency could determine, for example, that the target communicates at least daily with a suspected drug dealer and, regularly, on a weekly basis, with another individual in the target’s hometown. From these data the agency could infer that the target is himself a drug dealer, or at least a drug user, and also could infer that the individual with whom the target communicates weekly is a good friend or, possibly, someone with whom the target has a romantic involvement.

A foreign intelligence agency might obtain data on a target, which could reveal that the target has regular communication with a particular telephone number in Iran and places many calls to different individuals in a geographic area with a substantial Muslim population. From these data the foreign intelligence agency might infer that the target is involved in raising money for an activity directed from Iran, or that the target is involved in organizing some form of collective activity related to Iran. At the very least, these inferences might constitute sufficient probable cause to allow the agency to obtain a judicial order for acquisition of the content of these communications.

432 See Perritt, \textit{supra} note 73, § 13.05[A] (analyzing Smith v. Maryland, 442 U.S. 735 (1979)).

433 “Although acts performed in ‘public,’ especially if taken singly or in small numbers, may not be confidential, at least arguably a right to privacy may nevertheless be invaded through extensive or exhaustive monitoring and cataloguing of acts normally disconnected and anonymous.” Nader v. Gen. Motors Corp., 255 N.E.2d 765, 772 (N.Y. 1970) (Breitel, J., concurring).
The overall effect is analogous to physical surveillance of the target—following
the target everywhere and identifying all the people with whom the target commun-
icates face to face.

A newer form of traffic analysis is potentially even more useful and even more
intrusive: monitoring a target’s web browsing. Information about every URL visited
by a target is readily collectible by intercepting IP traffic to and from the target’s IP
address under a Pen/Trap order, which does not require probable cause. Alternatively,
and at far less cost, a criminal intelligence or a foreign intelligence agency
can obtain much of the same kind of information by obtaining records maintained
by search engines, such as Yahoo! and Google, which would reveal every web page
a user/target searches for. Because most web browsing involves regular resort to
search engines to find the URL for web pages of interest, data from search engines
represents a substantial subset of web browsing activity.

Analysis of this type of traffic not only reveals other people with whom a target
has communication, but is analogous to a type of physical surveillance—entirely
impracticable to effectuate—which would have someone looking over the target’s
shoulder as the target browses newspapers, magazines, or possible selections in a
bookstore. It is thus closer to revealing the target’s interests and thoughts, even if
the target never chooses to reveal these to anyone else.

Here lies the problem: the usefulness of the new kinds of traffic analysis that the
technologies of surveillance and target communication make possible is enormous.
It should not be difficult to convince legislators and judges that there is a compelling
need to engage in these newly productive types of surveillance, especially when the
surveillance can be justified as necessary for the “War on Terrorism.” But the risks
to personal liberty and personal autonomy that lie at the core of liberty, while un-
precedented, are likely to be overlooked when framed within legal concepts devel-
oped under the impact of past technologies to distinguish areas in which people have
a “reasonable expectation of privacy” from areas where they do not.

Furthermore, legislative and judicial decisions about striking the right balance
between surveillance and privacy almost always tend to assume that the government
will maintain the confidentiality of everything that it collects. In fact, experience
shows that individual government officials and agents do not necessarily respect con-
fidentiality obligations. The investigation of the Vice President’s office with re-
spect to disclosing the identity of CIA agent Plame, FBI Director J. Edgar Hoover’s
use of wiretap conversations to undermine the credibility of Martin Luther King, the
role of FBI executive Mark Felt as Deep Throat in the Watergate controversy, FBI
leaks about an individual suspected for a time of being the Atlanta Olympics bomber,
and many other instances demonstrate that when even the most secretive government

435 See generally STEPHEN HESS, THE GOVERNMENT/PRESS CONNECTION: PRESS OFFICERS
agencies have explosive information about individuals, the temptation to leak it is strong.

Consider further what would be in the information pool subject to possible leaks if widespread traffic analysis is performed, either monitoring e-mail communications and cell phone communications, or monitoring web browsing. The pattern-matching tools are imprecise, and it is inevitable that someone engaging in perfectly innocuous activities would occasionally come under suspicion. Heightened suspicion means that more data would be collected and more attention paid to it. And minimization does not work very well in these new contexts. So communications and web browsing associated with suspect persons or subjects would be accompanied by data on other matters of a sensitive nature to the target, albeit unrelated to national security threats or to criminal activity, obviously including sexual relationships or interests that the target legitimately may not want exposed to others. The temptation to leak these kinds of traffic would be especially strong to a leaker who wants to injure the target, because the leaks would not jeopardize legitimate national security or criminal intelligence.

3. Cybercrime and Cyberterrorism

The growing awareness, not only by governments but also by the general public, of the magnitude of the threat posed by cyberterrorism will make it easier to impose technological controls that undermine the essential features of the Internet architecture and that subject everyone to more intrusive government surveillance. The cyberterrorism threat not only involves Internet use to organize physical terrorist acts, as al-Qaeda has done, but it also provides a platform for effectuating attacks.436 If an attacker could disable access to bank records or corrupt data, interfere with military command and control systems, disable the intelligence that manages the electricity grid, or bring down the air traffic control system, the level of resulting chaos could exceed that resulting from a nuclear attack on a few cities and defense installations. It is right to worry about this and to take steps to mitigate the threat.

But, too often, the terrorism experts do little beyond wringing their hands about the limited power of governments to control the Internet. Implicitly, they yearn for a return to the technological environment of the mid-1950s, when a cozy relationship between intelligence agencies and one telephone company, one domestic telegraph company, and a handful of international cable carriers was all governments needed to keep an eye on things and, occasionally, to disrupt communications tying potential attackers together.

436 See Kelly A. Gable, Cyber-Apocalypse Now: Securing the Internet Against Cyberterrorism and Using Universal Jurisdiction as a Deterrent, 43 VAND. J. TRANSNAT’L L. 57, 74 (2010).
It is likely that focused public relations campaigns can shift public opinion to favor more controls on the Internet and a relaxation of the legal barriers to eavesdropping. Not only that, but some of the boundaries that have historically restricted some types of eavesdropping more than others—access to the content of communications, as opposed to communications transaction date—are becoming less relevant. The enormous amount of transactional data now available that reveals location, communications patterns, and web browsing histories present a new opportunity for traffic pattern analysis that rivals access to content in what it reveals about individual activities and intentions.437

CONCLUSION: APPLYING THE LESSONS LEARNED: ROLE OF LAW, INNOVATION, MARKETS, DISPUTES

The Internet’s success has validated the central features of its constitution, embodying important ideologies that define Western society: the efficiency of market-based competition in allocating resources, and the power of grassroots democracy. Human rights have benefitted.438 Human rights abuses are more likely to come to the attention of those who can do something about the violations. Grassroots democratic movements are more possible. The individual freedom that comes with being able to start one’s own business, perform music for the masses, or tell stories through books or movies enjoys a new life.

Markets and democracy have been newly empowered by the Internet’s decentralized architecture and its global scope. The smallest entrepreneur can specialize in what he knows best and rely on others to perform other necessary functions, linking all the inputs together through standardized interfaces and protocols. The weakest voice has an enormous megaphone represented by the World Wide Web.

Competition and democratic discourse, however, have always threatened established orders and elites. When new technologies increase, both motive and means exist to block or divert the new technologies. This may occur through changes in the content of the law or its enforcement mechanisms, as manifested by the efforts of large copyright owners to broaden liability for infringement, some successful, some not yet successful. It also may occur by economic or social pressure brought to bear on institutions controlling key bottlenecks, as in the case of rightsholders pressuring ISPs to throttle traffic that they perceive as facilitating infringement.

The best public policy is one that recognizes the harmful potential of new regulation of the Internet, made more likely by the asymmetry of political power favoring established institutions. At the same time, legal initiatives may be appropriate

437 See supra Part II.B (discussing behaviorally targeting advertising).
to restrict the exercise of private power that can be as harmful as undue regulation. Telling the difference is hard; advocates for blocking competition can always dress up their campaigns as effort to block the exercise of private power they characterize as harmful to the public interest.

A growing source of private power is that of proprietary empires.439 Big intermediaries are drawn into regulatory roles because they represent bottlenecks where it is relatively easy to regulate the conduct of people at the edge of the Internet. Whether and how these private regulators are subject to the constraints of due process is an important question of Internet policy.440

Governmental regulation may be more transparent and have more features of due process than private regulation, especially when private regulation is implemented through technological measures that automatically determine a “violation” of “rules” and automatically impose penalties such as excluding a user from Internet resources.441

Developing new legal responses should follow the course that law usually has taken in the Anglo-American tradition: lawmakers should not try to anticipate what will happen in the marketplace. Rather, they should wait and see which entrepreneurs succeed and which fail; they should wait for consumers to decide what is the next new thing. Then, they should wait a while longer to allow actual disputes to emerge, disputes significant enough for the disputants to sue each other. Then, they should allow the courts to resolve the disputes by adapting well-established legal principles. Only when the pattern of judicial decisionmaking seems to have gone awry should legislators intervene. This has been the course generally followed in connection with the Internet, and it has been successful.

440 See id. at 576–80 (identifying different categories of intermediaries, assessing the source of their enforcement power, and possibilities for imposing due process obligations).