Shall It Be Said That My Dusk Was in Truth My Dawn? What States Can Gleam From the Environmental Consequences of Deregulating Electricity in California

Michael Kantro
I. INTRODUCTION

In 1996, the Federal Energy Regulatory Commission (FERC) promulgated Rule 888, which mandated the deregulation and restructuring of the United States electric utility industry. Since the promulgation of Rule 888, states have been struggling to restructure their electric utility industries. What makes deregulation a difficult environmental issue is that it has uncertain environmental and economic consequences. While FERC predicts that the consequences will be “minimal,” it may have underestimated harmful environmental impacts that could be caused by restructuring. This paper will look to California, one of the first states to pass a significant deregulation bill, to see what

* KAHLIL GIBRAN, THE PROPHET 6 (1923). [The use of the word “Gleam” in the title is intended to be a pun—Eds.]
† Michael Kantro is a third-year student at the Marshall-Wythe School of Law at the College of William and Mary. He would like to thank Professor Charles Koch, who helped inspire this article, and Liam McCann and Heather Phillips for reading and editing the article and providing helpful advice.
3 See Ann Berwick, Environmental Implications of Energy Industry Restructuring, 33 NEW ENG. L. REV. 619, 619 (1999) (conceding that predicting the environmental consequences of deregulation was necessarily “guess work”).
5 See id.
6 See David G. Pettinari, Comment, You Can’t Always Get What You Want – Will Two Recent State Court Decisions Tarnish the Political Promise of Electricity Industry Deregulation?, 76 U. DET. MERCY L. REV. 501 (1999), which describes California as one of the “pioneer states” for completely deregulating by 1998.
environmental lessons other states can learn from California's attempt at deregulation.

In Part II, this paper will examine the history of electric utility deregulation nationally. In Part III, this paper will discuss the possible environmental consequences of deregulation on a national scale. In Part IV, this paper will examine the history of the restructuring effort in California. In Part V, this paper will analyze the effects of California restructuring on the environment. It will look at the market that has developed after restructuring and assess the effectiveness of the public policy programs California has implemented to protect the environment. It will examine subsidies, mandatory labeling, and command-and-control measures. This paper will point out the limits of market based protections and particularly note their failure to protect the poor. It will examine whether the "green energy" marketed in the California market is actually green. This paper will also examine the complex hybrid structure California implemented and look at how that structure aids in creating a renewable energy market. Finally, this paper will conclude by describing the environmental lessons other states can learn from the California restructuring experience.

II. Deregulation Nationally

In order to understand the movement to deregulate electrical utilities, it helps to understand why utilities were regulated in the first place. When Thomas Edison opened the first major electricity generation plant on September 4, 1882, he began what quickly became a highly competitive industry.8 The industry followed a predictable pattern of growth, expanding to over thirty-seven hundred utilities,9 followed by concentration.10 Eventually, by the mid-1920s, sixteen companies controlled 85 percent of the electricity market.11

As huge electricity trusts developed, consumers became concerned that electric utility owners were gouging consumers by setting unreason-

7 Green energy and renewable energy are used synonymously for the purposes of this paper.
9 See id.
10 See id.
11 See id.
ably high prices.12 States began to regulate through Public Utility Commissions (PUCs) to reduce electricity prices.13 The justification for regulation was found in the structure of electric utilities. Electric utilities are often described as having three structural components—generation, transmission and distribution.14 Electric utilities have traditionally been vertically integrated, having one owner control all three functions.15

Because of the high costs of entry, utilities experienced economies of scale, where “one large utility can produce and sell electricity more cheaply than could a number of small producers.”16 The economies of scale were exacerbated by vertical integration.17 These economic conditions lead policy makers to categorize electricity generation as a “natural monopoly”18 where “one firm can more efficiently deliver a product at a lower cost than multiple firms.”19 The government allowed a legal monopoly in order to gain the efficiencies of the economies of scale and set prices through regulation in order to avoid the high prices of a monopoly.20

As part of the compensation for governmental regulation, the government allowed utilities to earn a reasonable return on prudent capital investments.21 Natural monopolies pose significant public policy problems.22 While a single firm or producer is structurally able to provide the lowest costs, that firm has the incentives of a monopoly and may

\footnotesize
\begin{flushright}
\begin{itemize}
\item 12 \textit{Peter Navarro, The Dimming of America} 4 (1985). \textit{See also} Tomain, \textit{supra} note 8, at 830-31 (arguing that consumers were concerned with more than just the high prices, but also by the cause of the high prices. “The electric trusts, like the oil trusts before them, were susceptible to stock manipulation and shareholder abuses . . . [and] the public reacted sharply to the electricity trusts and the electricity industry came under scrutiny by state and federal politicians.”).
\item 13 \textit{See} \textit{Navarro, supra} note 12, at 4-5.
\item 14 \textit{Paul L. Joskow and Richard Schmalensee, Markets for Power: An Analysis of Electric Utility Deregulation} 25 (1983).
\item 15 \textit{See id.}
\item 17 \textit{See Joskow, supra} note 14, at 25 (making the argument that “it would be wrong to assume that these three segments can be operated independently from one another, by separate firms coordinating their activities . . . without any loss in economic efficiency”).
\item 18 \textit{See id.} at 29.
\item 19 \textit{See Tomain, supra} note 8, at 832.
\item 20 \textit{See Joskow, supra} note 14, at 30-31.
\item 21 \textit{See Tomain, supra} note 8, at 832.
\item 22 \textit{See Joskow, supra} note 14, at 30.
\end{itemize}
\end{flushright}
artificially inflate prices. Regulating a monopoly is a difficult task, however, as regulations can “provide incentives for inefficiency” by persistently allowing utility earnings which are either too high or too low.

The efficiency of regulation began to fall apart in the 1960s, when the high costs of the Vietnam War and large amounts of social spending resulted in increased inflation and increasing electric utility costs. In addition, the passage of the Clean Air Act in 1972 increased costs as much as twenty-five percent. Many Northeast utilities shifted from coal burning plants to oil fueled plants to comply with the Clean Air Act. As a response to the oil crisis, utilities began to shift resources to nuclear power. Nuclear power became less attractive and cost-effective after the Three Mile Island disaster in 1979. The Nuclear Regulatory Commission (NRC) increased the environmental and safety standards for nuclear power plants, resulting in increased costs. These economic conditions “put great pressure on utilities to raise prices at unprecedented rates.”

While utility owners were frustrated by decreased profits, consumers were frustrated by the price increases. Despite public

23 See id. Richard A. Posner described the relationship between utilities to regulators in a regulated monopoly as “manipulative,” in which the regulated firm have a perverse incentive to “[hide] profits in costs, for example by purchasing supplies from wholly owned but unregulated subsidiaries at inflated prices that can be covered in its allowed rates.” Richard A. Posner, The Effects of Deregulation on Competition: The Experience of the United States, 23-Symposium FORDHAM INT’L L.J. S7, S10 (2000).

24 JOSKOW, supra note 14, at 31. In addition, regulation provided incentives for inefficient investment in generation facilitates because it “encouraged utilities to build large, long-lived generating stations that took a decade or more to construct” and over that decade, utilities would be unable to take advantage of new technology. See HYMAN, supra note 16, at 327.

25 See NAVARRO, supra note 12, at 7.

26 See id. at 8.

27 See id.

28 See id.

29 On March 28, 1979 a cooling system malfunction resulted in the first major nuclear accident in America. See HYMAN, supra note 16, at 136-7. Consumers and investors lost confidence in nuclear power. After the accident “even proponents of the nuclear effort seemed to be thinking more in terms of finishing what was already under construction [rather] than planning for additional facilities.” Id. at 137. No new plants were ordered. See id. at 33.

30 NAVARRO, supra note 12, at 10.

31 Tomain, supra note 8, at 834.

32 See NAVARRO, supra note 12, at 10.
frustrations, PUCs were obliged to allow utilities some profit and were, therefore, forced to increase electricity prices. The public frustration did lead the PUCs, however, to increase rates much more slowly than the increased costs.33 This rate suppression provided utilities with perverse incentives to forgo economically sound investments.34

The rapid increases in costs in the United States electricity market, concerns about energy conservation, and the belief that the use of environmentally efficient technologies might be commercially viable combined to create a political environment willing to allow increased competition in the electric utility industry.35 In response to these concerns, Congress passed the Public Utility Regulatory Policies Act of 1978 (PURPA).36 PURPA allowed for non-utilities to engage in electrical generation as independent power producers, or qualifying facilities.37 PURPA had the specific goal of encouraging the development of alternative electricity sources.38

Many of these qualifying facilities were efficient and profitable.39 However, in order for qualifying facilities to get their energy to the market, they needed to use the transmission lines, which were still a monopoly owned by the utilities.40 As qualifying facilities became more successful they demanded access to a wider market through the national transmission lines.41 PURPA gave FERC the power to, under some circumstances, force electrical utilities to allow these new competitors to use transmission facilities.42

\begin{footnotesize}
\begin{enumerate}
\item See id. at 9.
\item See id. at 12.
\item PURPA allowed these independent power operators to sell their power to utilities at "avoided" cost. PURPA § 210. Avoided cost was the "utility's estimated cost of generating the equivalent amount of power by building new baseload capacity," not the actual market value of the electricity. See Michael Evan Stern & Margaret M. Mlynczak Stern, \textit{A Critical Overview of the Economic and Environmental Consequences of the Deregulation of the U.S. Electric Power Industry}, 4 ENVTL. LAW. 79, 87 (1997) [hereinafter \textit{Critical Overview}], available at WL 4 ENVTLAW 79.
\item Public Utility Regulatory Policy Act § 2.
\item See Tomain, supra note 8, at 835.
\item See \textit{Critical Overview}, supra note 37, at 90.
\item See Id.
\item Public Utility Regulatory Policies Act § 203
\end{enumerate}
\end{footnotesize}
In 1992, Congress moved one step closer to electric competition by passing the federal Energy Policy Act of 1992 (EPAct), which removed some regulatory burdens from qualifying facilities and allowed increased access to transmission lines. The EPAct was designed to slow the rise of American oil imports, conserve energy, encourage efficiency, provide new energy options and more diverse supplies, develop renewable energy resources, increase competition in the electric industry, and address global warming.

The success of qualifying facilities has lead to the conclusion that electrical generation no longer experiences economies of scale or is hampered by high costs of entry, and is, therefore, no longer a "natural monopoly." This conclusion helped lead to deregulation in part because economists already believed it was possible to separate the components of a natural monopoly. This theory was tested with telephone deregulation. Called the "Bell doctrine," this theory posits that where a regulated industry nonetheless results in monopolistic characteristics, the appropriate response is to "quarantine" the monopolistic section of the industry and allow competition in other areas.

Rule 888 was an attempt to quarantine generation from transmission and distribution. It envisioned an independent systems operator to control the transmission lines and ensure non-discriminatory open access to transmission lines in order to assure competition. FERC needed to decide how to deal with the politically difficult issue of stranded costs, "the costs prudently incurred by the local utilities that will not be

43 See Perkins, supra note 35, at 1009.
45 HYMAN, supra note 16, at 165-66 ("Today, the generating sector of the electric utility industry no longer seems to exhibit economies of scale, and may be ripe for control by means of competition instead of regulation.").
47 See Noceto, supra note 46.
48 See id.
49 Paul L. Joskow & Roger G. Noll, The Bell Doctrine: Applications in Telecommunications, Electricity, and Other Network Industries, 51 STAN. L. REV. 1249, 1250 (1999). In the case of Telecommunications, this theory suggested that AT&T and GTE used monopolistic tendencies of local telephone lines to dominate a long-distance industry that could otherwise be competitive. See id.
50 See Rule 888, supra note 3.
51 See id. at 21565.
recoverable through market-determined prices, and that result from the utilities' reliance on the previous regulatory structure."\(^{52}\) Rule 888 dealt with stranded costs by endorsing the view that utilities should recover "legitimate, prudent and verifiable stranded costs."\(^{53}\)

Rule 888 was met with both praise and criticism: proponents of the rule stressed that competition would result in lower rates and increased efficiency,\(^{54}\) while critics believed that deregulation would pose a threat to the environment.\(^{55}\) Critics also worried that the poor would bear an inordinate burden of both the economic and environmental costs of deregulation.\(^{56}\) To allay fears that deregulation would pose a threat to the environment, FERC wrote an Environmental Impact Report (EIR). In this report, FERC conceded that the rule would have a negative impact if the industry favored coal, but argued that deregulation would have a positive impact if the industry favored natural gas, and concluded that "any negative impacts that the rule might cause are a small fraction of the uncertainty inherent in fuel price projections."\(^{57}\)

\(^{53}\) Supra note 3, at 21540.

\(^{54}\) See Critical Overview, supra note 37, at 101 ("In theory, the dismemberment of the traditional electric utility system . . . will lead to the dynamism of a truly competitive market in electricity, which is both economically and environmentally efficient."). But see id. at 104-5 (arguing that "if 'economic efficiency' connotes the lowest price, deregulation proponents must properly define that price to include all consequences attendant to the proposed alternations to the existing system of electric power generation").

\(^{55}\) Critics argued that deregulation of electric utilities would lead to increased emissions of carbon dioxide because competition would lead to more frequent use of older coal-fired power plants, increased demand for electricity would result in more use of fossil fuel for electricity generation, uncertainty would delay the retirement of some older plants, and restructuring would reduce investment in renewable technology. See Edward A. Smeloff, Utility Deregulation and Global Warming, the Coming Collision, 12-SPG NAT. RESOURCES & ENV'T 280 (1998), available at WL 12-SPG NATRE 280.

\(^{56}\) See Critical Overview, supra note 37, at 111 (stating that "viewed in the very best light, the nation's failure to provide subsidized electricity will mean that millions of U.S. citizens could see their standard of living decline to early twentieth century levels"). See also Stephen M. Johnson, Economics v. Equity: Do Market-Based Environmental Reforms Exacerbate Environmental Injustice?, 56 WASH. & LEE L. REV. 111, 118 (1999) (arguing that the market, and market based reforms, "encourage polluters to shift pollution to lower-income communities").

III. NATIONAL ENVIRONMENTAL ISSUES

The Environmental Protection Agency (EPA) argued publicly that the FERC EIR was incorrect in assessing potential environmental damage as "minimal." United States electric utilities have been a major contributor to global environmental problems. Electric utilities are a major source of nitrous oxides, sulfur dioxide and carbon dioxide. In fact, the EPA estimates that electricity utilities accounted for 36 percent of carbon dioxide emissions and 25 percent of nitrous oxide emissions in the United States in 1998. Nitrous oxides and sulfur dioxide are a major cause of acid rain, while carbon dioxide is a significant greenhouse gas. Old coal plants, which were "grandfathered," so as to be immune to the Clean Air Act, cause most of the damage.

The clash between the EPA and FERC over the EIA was essentially an argument over the future of these coal plants. The EPA was skeptical about FERC's assertion that electrical generators would have no incentive to crank up the use of cost of operating coal-firing plants because natural gas would remain cheaper than operating coal-firing plants. The EPA was concerned that if FERC was wrong, and natural gas did not retain a competitive advantage, restructuring would encourage utilities to increase the use of coal burning plants, and thus increase pollution. The controversy eventually led to a large political conflict between the Environmental Protection Agency and FERC.

58 See supra note 4.
60 See id.
62 See OTTINGER, supra note 59.
63 See id.
64 See Ann Brewster Weeks, Advising Nature: Can We Get Clean Air From the Old Ditties?, 33 NEW ENG. L. REV. 707, 710-11 (1999). See also Berwick, supra note 3, at 621-2 (arguing that grandfathering means that "Eisenhower era plants" who did not have to comply with the heightened standards of the Clean Air Act will have “a competitive edge” in a deregulated market).
65 See Miller & Serchuk, supra note 57, at 119.
67 See id.
68 About Rule 888, Nichols said, “[We at the EPA] don’t want them to screw things up.” FERC chair Elizabeth Moler countered, “we have declined the honor of doing EPA’s job, but I don’t think we ‘screwed it up.’” Utilities Not Doing Enough to Protect Public
In addition to a possible increase in dirty gases released by coal burning plants, electrical restructuring could have other negative environmental effects.69 It could affect the patterns in which nuclear power plants are used, causing a shift to coal use as nuclear power becomes less competitive.70 If nuclear power plants continue to be used, the public suffers incremental harms from the radioactive waste.71 Shutting down nuclear power plants would cause an entirely different set of environmental problems, because, if the plants are closed, the radioactive waste from nuclear power plants will have to be safely isolated from the environment for at least 10,000 years.72

IV. RESTRUCTURING IN CALIFORNIA

Pre-restructuring regulatory reform had a "profound" effect on the California electrical utility industry, in part because of the success of qualifying facilities.73 By the 1990s, qualifying facilities in California increased from a negligible percentage of electricity-generating capacity to almost 12 percent of dependable capacity in 1991.74 However, electricity prices were high. The impetus for reform was the belief that regulation of the industry caused inflated electricity prices.75
On April 20, 1992, the California Public Utilities Commission (CPUC) issued a Rulemaking proceeding in order to restructure California’s electric utility industry. The CPUC explored two possibilities—the first of which was a structure of retail competition that would allow retail customers to choose among electric suppliers and a wholesale, pool-oriented structure. This “poolco” system, like the U.K. system, would have resulted in a centrally determined wholesale price based on a winning bid. The debate over whether to implement a bilateral and pool-oriented trading system was contentious. Eventually, CPUC negotiated a joint memorandum of understanding with several major utilities, including giant Southern California Edison. This compromise envisioned a hybrid system that would allow both pool-based and bilateral trading.

In 1996, the California state legislature passed Assembly Bill 1890, which restructured the California electric utility industry using the CPUC model. The Assembly retained transmission as a state-regulated monopoly, while competition was introduced to electricity generation. In order to facilitate the market, the bill created an oversight board and authorized the creation of two quasi-public corporations—an Independent Systems Operator (Cal-ISO), and a Power Exchange (PX).

77 A poolco is where there is a centrally determined wholesale price based on a winning bid. See Lori M. Rodgers & Joseph F. Schuler, Jr., Ready, Fire, Aim: California and the Nation on the Eve of Competition, PUB. UTIL. FORT., Jan. 1, 1998, at 26 [hereinafter Eve of Competition].
78 See id.
79 See Keith R. McCrea & Gregory K. Lawrence, East and West Coast Restructuring Efforts, 12 – SPG NAT. RESOURCES & ENV’T 243, 244 (1998).
80 See id. at 244 (“The debate between the Poolco and direct access [bilateral trading] advocates had much the fervor of a crusade . . . [but] the gulf between the two camps began to narrow when Southern California Edison . . . negotiated a memorandum of understanding [with CPUC].”).
81 See Eve of Competition, supra note 77, at 26.
84 The ISO was to designed operate the transmission grid in such a way to provide open access to generators and insure reliability. California Oversight Board, Decision 97-05-1, Appendix A, Bylaws of the California Independent System Operator Corporation, A California Non-Profit Benefit Corporation, Article II § 2 (a)-(b) (March 23, 2000) at http://www.eob.ca.gov/documents/index.html.
Assembly Bill 1890 was controversial. Proponents argued that the bill was "unique in its comprehensive approach to restructuring." The California legislature followed FERC guidelines in Rule 888 and argued that "prudent" stranded costs should be recoverable. Moreover, the bill created a fund to support environmental programs. CPUC issued a detailed report arguing that the negative environmental impact of restructuring would probably be minimal and the overall effect would benefit the environment.

The California legislature clearly viewed the benefits of restructuring as greater than merely reducing prices, but to "ensure that California's transition to a more competitive electricity market structure . . . creates a new market structure that provides competitive, low cost and reliable electric service . . . and preserves California's commitment to developing diverse, environmentally sensitive electricity resources." Unfortunately, it appears that the legislature was overly optimistic about price reductions. Over the summer, customers of San Diego Gas and Electric Co. (SDG&E), the first California customers to pay market costs for electricity, had their bills spike by two to three hundred percent.
V. The California System

California’s electrical utility industry was in fairly good shape, environmentally, prior to restructuring. California had very few coal-fired power plants within its border and imported most of its coal generated fuel from plants in the Southwest owned by California companies. California has two nuclear power plants—the San Onofre Nuclear Generating Station in San Diego County and the Diablo Canyon Nuclear Power Plant in San Luis Obispo County.

In 1995, 20 percent of California’s power was generated in state by hydroelectric plants, 14 percent by nuclear power, 7 percent by coal, and 30.5 percent by natural gas. In addition, 18.5 percent of power was imported from the Pacific Northwest or the Southwest. Between 1991 and 1995 California coal consumption dropped from approximately 9.7 percent to 7 percent of the total yearly consumption of electricity.

One of the major environmental concerns of electrical restructuring in California was the belief that renewable energy may not be commercially viable and would be unable to survive a deregulated market. As of 1999, it cost 5.3 cents per kilowatt/hour for renewable energy, and about 2.5 cents per kilowatt/hour to use coal or oil. Critics deliberate blackouts since World War II. See Nancy Rivera Brooks, Consumers Seek Repeal of Utility Deregulation Electricity: Surging bills and shortages have convinced many that competition isn’t working. But a solution is elusive., L. A. TIMES, July 29, 2000, at A1, available at 2000 WL 2264592 [hereinafter Brooks]. The blackouts nearly knocked out power to ten states. Mulkern & Katches, supra note 91. Things got so bad that the ISO staff proposed operating a floating power plant from a barge in the San Francisco Bay. See supra Vogel.

This, however, is an example of a negative environmental externality. Because California does not have to deal with the consequences of the coal-generated pollution caused by the electricity it imports, California is unlikely to take account of the environmental damage the coal-fired plants cause to others. See Informational Report, supra note 76.

In addition, several California utilities, including Southern California Edison, are part owners of the Palo Verde Nuclear Generating Station in Arizona. See id.

See id. at table 1-2.

See id. at table 1-2.

See id. at table 1-2.

wondered if renewable energy could survive if consumers were unwilling to pay added premiums.100

California decided to set up a fund to subsidize renewable energy.101 Theoretically, subsidizing renewable energy will make it cheaper and thus more competitive with less environmentally-friendly production methods such as coal.102 The California renewable energy fund has a four-year, $540 million budget raised from Southern California Edison, Pacific Gas and Electric Company, and the San Diego Gas and Electric Company.103 The fund is organized by the California Energy Commission, which divided the fund into four accounts—the Existing Renewable Resources Account ($243 million), the New Renewable Resources Account ($162 million), the Emerging Renewable Resources Account (Buy-Down Program—$54 million), and the Consumer-Side Renewable Resources Account.104 One-percent of the budget ($5.4 million) was put aside, and later used for a plan to educate consumers about renewable energy.105

The Existing Renewable Resources Account was designed to help maintain in-state existing renewable technologies during the first four years of restructuring.106 It allocates $243 million in subsidies—$135 million to biomass, waste-tire, and solar thermal energy, $70.2 million to wind, and $37.8 million to geothermal, small hydroelectric digester gas, landfill gas, and municipal solid waste.107 Renewable suppliers with eligible generators receive a monthly cents-per-kilowatt-hour payment.108

The New Renewable Resources Account contains $162 million to support prospective new renewable electricity generation projects built in

100 See cf. id. See also Bryan Lee, Green Fees: Will consumers pay for environmentally friendly power? In theory, yes; In practice, maybe not, Sept. 13, 1999, WALL ST. J., at R12.
102 See Perkins, supra note 35, at 1024.
103 Cal. A.B. 1890 Article 7 § 381 (e).
105 CAL. ENERGY COMM'N, RENEWABLE ENERGY CONSUMER EDUCATION MARKETING PLAN 3, (1999) [hereinafter MARKETING PLAN].
106 CAL. PUB. UTIL. CODE § 381 (c) 1.
108 See id.
California after September 26, 1996. This fund works on a bid system in which bids are submitted for potential projects in an auction. Winning bids can earn up to 1.5 cents per kilowatt-hour in incentives. At the first auction, fifty-five of the bids were determined to be eligible for funding and the fund provided incentives for the creation of 300 megawatts of wind-powered electrical capacity, 157 megawatts of geothermal generation facilities, 70 megawatts of landfill gas generation, twelve megawatts of biomass generated energy, 1 megawatt of digester gas, and 1 megawatt of small hydroelectrical generation.

The Emerging Renewable Resources Buy-Down Program authorizes $54 million in rebates of as much as $3,000 per kilowatt/hour for residential, industrial, commercial or agricultural customers who purchase and install a renewable electricity generation system. In order to be eligible, the system must be connected to the electric grid. This program covers photovoltaics, small wind turbines, fuel cells and solar thermal systems.

The Consumer Side Renewable Resources Account is designed to provide an incentive for consumers to use renewable power. It earmarks $81 million to provide a 1.25 cent/kilowatt hour rebate for customers who use recognized renewable resources. Only energy generated in California by a non-utility generator is eligible for the rebate. Between the inception of the program in April 1998 and December 1999, 1.79 million customers have received $13,081,923 in rebates.

110 See id.
111 See id.
112 See id.
114 See id.
115 See id.
117 Up until December 1999, the incentive was 1.5 cents per kilowatt/hour. See id.
118 See id.
Finally, CPUC, under the auspices of Assembly Bill 1890 and Senate Bill 90, started an education program, called the Renewable Energy Consumer Education Plan (RECE). The plan allocates a $5.4 million, three-year budget. CPUC plans to begin by focusing on informing potential “early adopters.” Then, with a combination of word of mouth, a grass roots organization, and a mass media campaign, CPUC hopes to inform a broader base of potential customers.

VI. ANALYSIS

A. Externalities

Environmentalists are concerned about the effects of restructuring because “the market is not only inadequate to guide consumers’ allocation of resources in a way that advances the public goal of environmental protection and least overall cost, it may, in some instances, guide the investment and consumption in directions that damage the environment and increase long-term cost.” This is because environmental consequences are often externalities, and markets tend to ignore negative externalities.

Externalities in electrical energy generation, transmission and distribution for example, include the loss of fisheries caused by the use of a hydroelectric dam, and the environmental damages caused by burning fossil fuels. These externalities may lead to the “tragedy of the commons,” in which actors face an environmental incentive to misuse collective property. Where negative externalities are unaccounted for, “low-priced power may not be the same as low-cost power,” because the

120 See MARKETING PLAN, supra note 105, at 3.
121 See id.
122 See id at 5.
123 See id.
124 See id.
125 Perkins, supra note 35, at 1033.
126 See Perkins, supra note 35, at 1033.
127 See Perkins, supra note 35, at 1033.
128 Garret Hardin, The Tragedy of the Commons, 162 SCI. 1243 (1968) (arguing that actors have incentives to waste or misuse community property).
true costs are not included in the price. Some of the causes of externalities include: that consumers have limited knowledge, that individuals use a short time frame to assess costs, that it is difficult to price a problem that is geographically diffused, and that many environmental harms are uncertain.

California attempted to solve the problem of environmental externalities in providing consumers with knowledge and information about the external costs by subsidizing and marketing renewable resources, and by forcing electricity generators to display a “power content label” on mail and Internet advertising. If consumers know the possible costs and benefits of their behavior they are able to make rational decisions. For this reason, information is a prerequisite for markets to run efficiently. This type of mandatory labeling helps the market account for “otherwise hidden environmental side-effects.”

Despite labeling, one of the problems the California residential market has encountered is false or misleading advertising relating to the environmental quality of the energy provided. In an attempt to deal with misinformation, the Assembly passed Senate Bill 1305, which requires generators to report consumption and fuel use figures to the California Energy Commission (CEC). The CEC may then certify a generator’s mix as renewable. Oddly, the provisions of SB 1305 apply

129 See Perkins, supra note 35, at 993.
130 See id. at 1035.
131 See supra note 100 and accompanying text.
132 The label, which is based on FDA food labels, is designed to serve as a quick and easy display for consumers to get information about the electricity they purchase. California Energy Commission, California’s Power Content Label, at http://www.energy.ca.gov/consumer/power_content_label.html (last visited Oct. 27, 2000).
134 See Johnson, supra note 56, at 149.
135 Perkins, supra note 35, at 1038 (“Mandatory electricity labeling, property done, is a clear case of regulatory intervention helping achieve the optimal allocation of social resources where the market itself would not have done so.”).
138 See id.
only to potential and actual customers, and not to "advertisements and notices in general circulation media." One attempt at a solution to the problem of misleading advertising came from the market. Center for Resource Solutions, a private non-profit organization, established the Green-e logo. The Green-e logo was based on the popularity and success of the recycling logo. A Green-e is a way to verify that energy is renewable and environmentally clean. The requirements for Green-e certification are: (1) at least 50 percent of the electricity must be from renewable sources, (2) the electricity that is not from renewable resources must be from sources with reduced emission air pollutants, (3) the company generating the energy must sign a code of conduct and release environmental information, (4) the company must agree to undergo a review to ensure that their advertising contains no misleading environmental information, and (5) the company must agree to a third-party audit to ensure compliance.

California has made a step towards a cleaner environment by informing customers of negative environmental externalities, but they do not go far enough. Currently, generators are only required to disclose their fuel mix or their percentage of electricity generated using renewable resources. A more complete plan would also include forced disclosure of emissions. Moreover, in order to assure an informed consumer base, California should amend Senate Bill 1305 to remove the exception for "advertisements and notices in general circulation media."

B. Beyond Externalities

However, even if the externalities are included in the cost of the energy, significant environmental goals may still not be reached. One of the major reasons is that each of these methods is designed to work on the macro-level and do not deal with the distribution of wealth or the

139 See id.
140 Cal. SB 1305 § 398.4 (b).
142 See id.
143 See id.
144 See id.
146 See id.
147 See Eye of Beholder, supra note 137, and accompanying text.
distribution of pollution.148 When there are gross disparities in wealth and purchasing power between communities and nations, cost-benefit market-based decision-making may distribute costs to the poor and benefits to the wealthy.149 This is, in part, because where the individuals harmed by the pollution are dispersed or poor, they may not be in a position to bargain with the polluter.150 In addition, a diverse group of individuals may have a more difficult time gathering information and the transaction costs of engaging in a legal battle may be prohibitive.151 Finally, while the market may under-compensate poor human communities, it ignores non-human communities.152

C. Renewables in the New Market

Prior to restructuring, many environmentalists and utilities were optimistic that, despite potentially higher costs, the green energy market would still be competitive because industry, businesses, and residential consumers would be willing to pay a premium for green energy.153 To determine whether consumers are willing to pay a premium for green electricity, it is important to look at the early results of restructuring, before a hot summer caused a spike in demand.154

In the early days of restructuring, green energy appeared to have become the most popular way to market energy.155 Residential competition in green power was described as “robust,”156 and price-based competition as “not vigorous.”157 Energy service providers had difficulty

148 See Johnson, supra note 56, at 116.
149 See generally, United Nations Framework Convention on Climate Change, May 9, 1992.
150 See Johnson, supra note 56, at 156.
151 See id.
152 See AL GORE, EARTH IN THE BALANCE 189 (1992).
153 See Lee, supra note 100.
154 This is because “on a hot summer day California simply cannot round up enough electricity to meet demand.” See Brooks, supra note 91, at A1. Under such conditions any electricity will fetch a high price.
155 See MARKETING PLAN, supra note 105, at 16 (“Given AB 1890’s mandated 10 percent rate cut for residential customers of the IOUs over the next few years, ‘greenness’ is virtually the only distinguishing product variable affording ESPs [Energy Service Providers] and entrée to the residential market.”).
156 Ryan Wiser, et al., California’s Electric Market: What’s in it for the Customer, PUB. UTIL. FORTR., Aug. 1, 1998, at 38, 44.
157 Id. at 44.
distinguishing their product based on cost alone.158 Therefore, one of the only ways into the market was through “premium-priced, value-added products” like green power.159 For these reasons, “green power” appeared to be dominating advertising and marketing campaigns aimed at residential markets prior to the energy crisis.160

However, just because “green energy” is marketed does not mean that the advertising was effective.161 Consumer groups complained that small businesses and residential customers were unable to take advantage of restructuring.162 Particularly perturbing to some is that while “green energy” was extensively marketed, only around 1 percent of residential customers switched electric providers.163 This caused the Ralph Nader-led advocacy group, Public Citizen, to call the advantages of restructuring “largely a hoax on consumers.”164 While some concern is warranted, it is important to remember, “[i]t was never intended that the success of California’s market be gauged by the number of customers who have ‘switched.’”165 In fact, “the ‘diffusion’ of new products is rarely immediate, but typically starts slowly before accelerating.”166 The slow pace of switching is comparable to the rate of switching after the breakup of AT&T.167

While the residential market remains untapped, more governmental, industrial, and business customers have switched to “green power.”168 Santa Monica was one of the first cities to switch to green

158 See id. at 40.
159 Id. at 42.
160 See id. at 39.
161 See id. at 39.
162 See Mix of Jeers and Praise for California’s First Anniversary of Retail Competition, ELECTRIC UTIL. WK. 7 (1999), 1999 WL 12165320 [hereinafter Mix].
163 See id.
164 See id.
166 See Mix, supra note 161 (citing Californian’s for Affordable & Reliable Electric Services (CARES)).
167 Wiser, supra note 156, at 39.
168 See id. at 39, 40 (“In the first year after the 1984 breakup of the Bell system, for example, AT&T’s share of the interstate telephone market declined by less than 4 percent, despite aggressive marketing on the part of its challengers.”).
power.169 Chula Vista has followed, and San Diego may be on the way.170 Large businesses that have switched include Time-Warner,171 Kinko’s,172 and Los Angeles Airport (LAX), which signed an agreement with the Los Angeles Department of Water and Power that will incrementally increase “green power” to 50 percent over a ten-year span.173

The number of business and industrial customers switching to green energy bodes well for the future of the renewable resources market because as more consumers shift to “green energy,” the price should drop, and thus become more competitive.174 Early results suggested that renewable resources might already be competitive: since restructuring, California experienced extensive investment in “green energy,” including proposals for $1.5 billion in new clean and efficient power plants.175 Before the summer price hikes, consumers were able to buy green power cheaper than power from older, dirtier sources.176

While the market in renewable resources seems strong, it is difficult to assess the effect of the renewable resource incentives because very few customers switched services and it is difficult to determine how many, if any, customers switched to the renewable energy because of the incentives.177 Given that California has a $23 billion electric industry,178 simple math suggests that $540 million in subsidies over four years would not go very far, particularly when it cost 5.3 cents per kilowatt/hour for renewable energy compared to 2.5 cents per kilowatt/hour to use coal or

169 See Michael Lohite, \textit{Santa Monica plans to buy all 'green' power, aims to set example for nation}, San Diego Union-Tribune, June 2, 1999, at A6.
170 See Lee, supra note 100.
173 The airports contend that this shift will not cost the airport any money, but they have budgeted $252,500 per year just in case. See Press Release, Los Angeles World Airports Authorized to Sign 10-year Agreement with DWP to Purchase Green Power (Oct. 19, 1999), at http://www.lawa.org/html/LAWA_show_news.asp?news=39.
174 See Lee, supra note 100, at R12 (citing Michael Feinstein, one of the Santa Monica city council members who voted for a “green energy” program).
175 See Mix, supra note 161.
176 See Asmus, supra note 98.
177 See Mix, supra note 161.
178 See Noceto, supra note 46.
oil. Still, the subsidies were designed only to "make sure we didn't throw out the baby with the bath water on the renewables."180

D. Confirming Environmental Benefit

Even if energy is accurately marketed as "green," it may not actually have a positive environmental impact.181 One of the unique aspects of energy as a commodity is that it is indistinguishable—all generators place electricity into the same transmission grid.182 Green energy purchases may have no environmental impact "because the green energy has already been sold" into the pool.183 If the renewable energy and the coal-based energy all go into the same pool, then how can consumers determine if they are getting green energy? How can consumers determine that the green energy will help the environment?

California found an elegant answer to the question in the structure of the new electric industry, which combines a pool-co system with a bilateral market.184 A pool-co model serves as "an auctioneer, a power dispatcher and a bill collector."185 Pool-co structures have been opposed as "the very type of 'command and control' regulation which has contributed so significantly to . . . exorbitant electric rates."186 However, pool-co is viewed more technically efficient187 and fair than bilateral trading.188

Bilateral trading, on the other hand, allows for direct contracts between electricity generators and buyers.189 This is based on the
“fiction” that the same energy a buyer purchases will be delivered through the transmission lines. Bilateral trading is controversial, in part, because it “purports to create a point-to-point contract path for transmission, ignoring the dynamics of grid physics.” Professor Charles Koch describes it elegantly: “the results of these characteristics can be envisioned by considering a person in Spain buying a cup of water from someone in the United States. The person in the United States must deliver the water by dropping it into the Atlantic Ocean; the purchaser dips a cup of water out of the ocean.”

Most significantly, bilateral trading has been criticized as “unfair” to small consumers and residential customers. This hybrid system should allow consumers to reap the benefits of both models, but “California’s creation of a separate ISO and PX, with mandatory use of a scheduling coordinator to schedule bilateral contracts with the ISO, is more complex than what most states are trying.”

The complexity provides benefits, as consumers will get the fairness of a pool-co system and the “fiction” of direct contacts.

The California model provides increased fairness compared to bilateral trading alone, because bilateral trading provides a system in which larger consumers will be able to take advantage of the greater bargaining power and receive better prices. Such a system may exacerbate environmental injustices because “in a free market, low-income communities will never have sufficient financial resources to buy clean air, clean water, and similar environmental and public healthy resources from wealthy communities or polluters.”

\[\text{See id. at 381-382.}\]
\[\text{Id. at 387.}\]
\[\text{Charles Koch, Control and Governance of Transmission Organizations in the Restructured Electric Industry (forthcoming 2000).}\]
\[\text{Large customers will have more bargaining power and “more resources to fathom the market” and thus “better access to bargains than smaller customers.” Guidebook, supra note 185, at 388.}\]
\[\text{Eve of Competition, supra note 77, at 31.}\]
\[\text{See Guidebook, supra note 185, at 394-95 (discussing the “[p]ros and [c]ons” of such a hybrid system).}\]
\[\text{See id. at 388. But see, Hazel, supra note 94, at 140 (arguing that industrial customers, usually large consumers of electricity, have benefited more than residential customers from deregulation).}\]
\[\text{Johnson, supra note 56, at 119-120 (arguing “environmental law developed and flourished precisely because economic theory, and the free market, did not address those social concerns”).}\]
system, by including pool-co characteristics allows for more transparent
prices, and therefore more fairness, than a solely direct access system.198

The hybrid also allows for the "fiction" of direct contacts through
bilateral trading. The bilateral trading component of the California
restructuring plan allows customers to know what they are paying for,
rather than what they are getting.199 A marketer selling "green energy"
can purchase energy from the power exchange (pool) or directly from a
generator. Energy bought from the Power Exchange is designated the
"California Power mix," and does not count as "green energy" for
California (or green-e) certification.200 Only a direct purchase from a
generator that is verified as green by the State of California counts towards
"green energy" certification.201 While consumers can never know that
they are consuming energy that was generated using renewable resources,
consumers can be certain they are paying "green energy" companies to
generate power.202 Because this system makes bilateral trades with green
energy generators a commodity, it also encourages further investment in
green energy generation facilities.

This system is not perfect. According to the 1999 Power Content
Label, 12 percent of the electricity sold to the power exchange was
generated using "eligible renewables."203 What is to stop marketers from
purchasing renewable energy, which would have otherwise been sold into
the pool, and selling it for a premium?

The best solution is to institute a "renewable portfolio standard." A
renewable portfolio standard is a market-based approach that is similar in
design to the federal sulfur-dioxide trading program.204 A renewable
portfolio standard establishes an across the board minimum amount of
electricity that must be generated from renewable resources.205 Generators
receive a credit for each kilowatt/hour of renewable energy sold to the
pool, and can sell those credits to generators who do not reach the
minimum.206

198 See Guidebook, supra note 185, at 390.
199 See California's Power Content Label, supra note 132.
200 See id.
201 The California Power Exchange verifies trades. See id.
202 See id.
203 See id.
204 See Prevost, supra note 145, at 30.
205 See id.
206 See id. at 30-31 (quoting American Wind Energy Association executive director
Randall Swicher as saying "credits are central to the concept if you are intending to
Each state would have a difficult problem setting the initial percentage. If the percentage is too high, it could be difficult for green marketers to distinguish their product. If the percentage is too low, it fails to protect renewable resources. I believe that the solution is to set the initial percentage slightly below the status quo, to ensure that renewable resources do not switch from the pool.

Renewable portfolio standards have three significant problems: they may be expensive, they may be unconstitutional, and they may be unfair to in-state businesses.

First, renewable portfolio standards may be expensive. Critics have estimated that federal renewable portfolio standards would increase costs by somewhere between 15 cents to 7 dollars a month per residential customer. Most of the studies suggest that the increase in costs would be “minimal.” These analyses may be flawed because the studies fail to account for risk. Because renewable resources have relatively stable year-to-year costs, the renewable resources are less financially risky than fossil fuel generators. Including a low-risk, but higher-cost investment in a portfolio is a well-established way to maximize investments—similar to the stabilizing effect treasury bonds have on an investment portfolio. Because of the positive effect renewable resources have on risk, a portfolio in renewable resources may actually reduce overall costs.

encourage compliance and encourage a market for these technologies through private-sector decision making”).

See id. at 36 (arguing a renewable standard set close to “what the market will achieve on its own will make it easy for every energy provider to look green” making green power “a much tougher sell”).

For California, the figure would need to be set near 12 percent according to 1998 figures. See California’s Power Content Label, supra note 132.

See Prevost, supra note 145, at 32-34.

See id.

See id. at 45 (arguing that renewable resources are “devoid” of systematic risk).

See id. at 50.

See id. at 45 (arguing that renewable resources are like government T-bills which “improve efficiency. They raise expected returns at any given level of risk, even though their own expected return is lower”).

See id. (“Portfolio theory tell us that when properly constructed . . . [a portfolio consisting of] riskless renewables serves to lower overall generating costs.”)
Renewable portfolio standards may also pose a constitutional problem. Most significantly, if a renewable portfolio standard applied to out-of-state generators, it may be constitutionally impermissible because of the dormant commerce clause. A renewable portfolio standard that applies just to in-state businesses, however, may be permissible as long as the program applies only to in-state businesses and only requires a mix of renewable energy, rather than attempting to set prices. Unfortunately, if a renewable portfolio standard applies only to in-state businesses, it may be unfair. Because in-state businesses would have to bear the financial burden of a renewable portfolio standard, the prices of in-state generated electricity could rise and become less competitive.

I believe that the benefits of a renewable energy portfolio would outweigh the costs because consumers would be assured that the demand for renewable energy results in investment in new facilities, not merely a shifting of renewable resources away from the power pool.

VII. CONCLUSION

As states struggle to undo almost eighty years of state regulation and restructure their electrical utility industries, the potential environmental consequences of deregulation pose a significant problem. Electrical generation is a major emitter of various dirty gasses. The market poses two significant environmental problems: the market may not effectively include the costs of negative environmental externalities into the price of electricity, and the deregulation may pose a threat to the renewable resources industry.

California attempted to account for negative environmental externalities by a program of mandatory labeling, which would require

216 See Steven Ferrey, Renewable Subsidies in the Age of Deregulation, PUB. UTIL. FORT., Dec. 1997, at 26-27 (contending that some portfolio standards may be unconstitutional while others may be permissible).

217 A state may not impose a levy on the sales of goods or services sold through interstate commerce in order to subsidize in-state industries. See id. at 24.

218 See id.

219 See Prevost, supra note 145, at 35-36 (discussing the similar negative effect on competition in a deregulated environment of states having different air standards for electric generators).

220 See cf. Prevost, supra note 145, at 35-36 (citing New Jersey Public Service Electric and Gas Co. Vice President Tony Borden who stated “we don’t think it’s fair for other utilities to just grind it up a few notches on the output of their plants and send that power here when they don’t have to meet the standards we do”).
disclosure of a seller's electric mix. However, the California labeling program is incomplete because labeling is not required in mass media advertisements and because the program was limited only to fuel mix, and excluded emissions. Although mandatory labeling will help to incorporate externalities into price, merely including externalities will not solve the more troublesome problems of unfair distribution of pollution.

California attempted to foster a market in renewable energy by creating a $540 million, four-year renewable resource subsidy, certifying green energy, and implementing an inventive hybrid restructuring system that allows for both pool-based and bilateral trading. The unique hybrid structure allows customers to know that the money they put into green energy would go to renewable energy generators while minimizing distributional unfairness. Unfortunately, early results were mixed. While companies were vigorously marketing renewable "green energy," very few residential customers switched to a new supplier. However, decreasing prices for green energy, the brisk pace of industrial switching and investments in renewable technology suggest a bright future.

Unfortunately, California failed to deal with one important problem, the possibility that consumers could pay for green energy without affecting the percentage of the electrical market that consists of renewable resources. To ensure that demand for green energy results in new investments in renewable technology, states should implement a hybrid system similar to California's, but with a renewable portfolio standard that would require that a certain percentage of the energy sold into the pool consists of renewable resources. A state with a strong mandatory labeling requirement, a carefully built hybrid restructuring system, carefully constructed short-term subsidies, and a renewable portfolio standard will go a long way towards minimizing the environmental consequences of electrical electricity deregulation.