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THORIUM’S GLOW: LIGHTING THE WAY FOR SAFE,

CHEAP ENERGY PRODUCTION

ZACHARY HAWARI*

Glenn Seaborg was the Atomic Energy Commission (“AEC”) Chair-

man in 1962. Even then, he marveled at the “almost unlimited amounts of

latent energy” in thorium and uranium and the promising solution of using

“the fuel in fluid form.”1 This sentiment holds true today. Liquid fluoride

thorium reactors (“LFTR”)2 could be safe, clean, and cheap without facili-

tating the development of nuclear weapons. Even so, civilian nuclear power

struggles in an uphill battle for public acceptance. Nuclear proponents must

address the legacy of Fukushima and Chernobyl. Critics point to dangers

of waste-filled mountains, radioactive clouds, and hazardous elements.3

States tremble at the prospect of nuclear weapons falling into the hands

of terrorists and rogue states. Some, like German Chancellor Angela

Merkel, argued we should shut down our nuclear facilities.4 Many say we

should stop expanding and subsidizing the nuclear sector. Others em-

brace LFTR, an abandoned reactor design, as the path to cheap, virtually

limitless energy. LFTR can replace fossil fuels and supplement renew-

able energy. It may even be the best way to combat modern energy and

environmental crises.

Part I addresses what LFTR is and why it is better than traditional

nuclear reactors. The first section explains how nuclear reactors work.

It then considers some relevant differences between LFTR and conven-

tional nuclear reactors. The second section explores LFTR’s advantages

* J.D. Candidate, William & Mary Law School, 2017; B.A. International Affairs, The George

Washington University, 2014. The author would like to thank the William & Mary Law

School faculty and staff and the William & Mary Environmental Law and Policy Review

staff for their support. He also greatly appreciates the support and camaraderie of his

friends, family, and colleagues.
1 Robert Hargraves, THORIUM: ENERGY CHEAPER THAN COAL loc. 2401 (2014) (ebook).
2 LFTR is pronounced “lifter.”
3 See Eifion Rees, Don’t Believe the Spin on Thorium Being a ‘Greener’ Nuclear Option,

THE ECOLOGIST (June 23, 2011), http://www.theecologist.org/News/news_analysis/952238

/dont_believe_the_spin_on_thorium_being_a_greener_nuclear_option.html [https://perma

.cc/JH3Q-QSAY].
4 Annika Breidthardt, German Government Wants Nuclear Exit by 2022 at Latest,
REUTERS (May 30, 2011), http://www.reuters.com/article/germany-nuclear-idUSLDE74T
00A20110530 [https://perma.cc/MJ2A-AT56].
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in efficiency, waste reduction, fuel availability, proliferation, and safety.

As noted in Part II, Cold War politics culminated in the abandonment of

thorium and molten salt reactors. The second section of Part II considers

and rebuts several common criticisms.

Part III considers how to bring LFTR to fruition and how policy

makers could address proliferation crises. The first section calls for an

international agency to coordinate state-subsidized nuclear research insti-

tutions. The next section argues for a refreshed allocation of energy Re-

search & Development funds focusing on LFTR. The third section considers

a hypothetical Iranian deal to highlight the nonproliferation advantages

of LFTR. It also offers ways to avoid some of the dangers from the actual

Iranian deal.

I. WHAT IS LFTR AND WHAT MAKES IT ATTRACTIVE?

A. The Nuclear Industry Revolves Around Radioactive Elements5

1. Nuclear Reactors Produce Heat Through Fission by

Bombarding Certain Elements with Neutrons

Nuclear reactors and fossil fuels generate electricity indirectly

through the production of heat.6 That heat creates steam to turn turbines

that generate electricity.7 A nuclear reactor bombards atoms of certain

isotopes,8 such as uranium-233,9 with neutrons until the atoms split into

5 This Note only covers the background nuclear science needed to understand the pitfalls

of PWR and advantages of LFTR. For a more detailed explanation of nuclear technology,

see BRIAN ADE ET AL., U.S. NUCLEAR REGULATORY COMM’N, SAFETY AND REGULATORY

ISSUES OF THE THORIUM FUEL CYCLE, 6–11 (2014); Hargraves, supra note 1.
6 The Nuclear Fuel Cycle, WORLD NUCLEAR ASS’N (June 2016), http://www.world-nuclear

.org/information-library/nuclear-fuel-cycle/introduction/nuclear-fuel-cycle-overview.aspx

[https://perma.cc/YFS3-4CCS].
7 Id.
8 All the atoms of a given element have the same number of protons within their nuclei, but

the number of neutrons may differ. See Glossary, WORLD NUCLEAR ASS’N (Mar. 2014), http://

www.world-nuclear.org/nuclear-basics/glossary.aspx [https://perma.cc/Z4QG-VDJB]. An

isotope specifies the atomic mass and accounts for the number of neutrons. Noting the

particular isotope can be important. Different isotopes may undergo fission or decay at

different rates. Also, some isotopes may be more stable and, hence, more common.
9 The numbers following an element name or preceding the symbol, e.g., uranium-233 or

233U, refer to the atomic mass of an isotope. The most common isotopes referenced in

this Note are thorium-232, uranium-233, -235, and -238, and plutonium-239.
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fissile material and heat.10 In part, controlling this reaction led to the

different types of reactors.11

2. Nuclear Reactors Can Use Solid Fuel or Liquid/Molten Fuel

a. Pressurized Water Reactors Use Solid Fuel and Cool the Core

with Water

Pressurized water reactor (“PWR”) is a broad label for the most com-

mon type of nuclear reactor, including light water reactors (“LWR”) and

heavy water reactors (“HWR”).12 Several basic components make up pres-

surized water reactors.13 The fuel is usually ceramic pellets of uranium

oxide, i.e., solid fuel, placed in fuel rods.14 The moderator slows the neutrons

so that more fission occurs, and the moderator can be water, heavy water,

or graphite.15 Operators insert and withdraw control rods that absorb neu-

trons to further adjust the rate of fission.16 The pressure vessel contains

these components.17 Outside the pressure vessel, superheated water and

steam turn a turbine to produce electricity.18 A thick concrete building

protects the reactor from the outside world and natural disasters.19

10 See Physics of Uranium and Nuclear Energy, WORLD NUCLEAR ASS’N (Sept. 2014),

http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/physics

-of-nuclear-energy.aspx [https://perma.cc/6YK5-JWJB].
11 See Nuclear Power Reactors, WORLD NUCLEAR ASS’N (Sept. 2014), http://www.world

-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/nuclear-power

-reactors.aspx [https://perma.cc/GZ9S-CRVP].
12 See id. In HWR, heavy water (D2O) replaces the hydrogen in water (H2O) with deuterium,

an isotope of hydrogen with twice the mass. See WORLD NUCLEAR ASS’N, supra note 8.

The use of deuterium helps control neutron absorption and the creation of unproductive

elements. See WORLD NUCLEAR ASS’N, supra note 10.
13 WORLD NUCLEAR ASS’N, supra note 11.
14 Id. When the ceramic pellets overheat and melt, this is referred to as a meltdown. It

may be accompanied by a release of radioactive material into the atmosphere and ground

water.
15 Id.
16 Id.
17 Id.
18 Id.
19 See WORLD NUCLEAR ASS’N, supra note 11. In total, three levels of physical barriers

protect the nuclear material: (1) the reactor core, (2) the pressure vessel, and (3) the

containment structure. This series of failsafes prevents a catastrophic release of high-

pressure steam and contains the radiation in the case of a meltdown.
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b. LFTR Uses Thorium Immersed in Molten Salts to Power the

Reaction, Contain the Fission Material, and Control the Heat

Thorium is LFTR’s primary input, but uranium actually fuels the

fission reaction.20 Thorium is fertile, not fissile, which means it must be

converted into a fissile element.21 Accordingly, thorium-232 is trans-

muted within a thorium blanket surrounding the core into fissile 233U.22

The thorium generated 233U is the nuclear fuel for LFTR’s fission re-

action.23 An initial investment of plutonium or enriched uranium24 starts

this process, and the uranium and plutonium waste products from PWRs

can be used as fuel thereafter.25 These elements are burned away during

the lengthy fission life of LFTR fuel unavailable in PWRs.26

But, thorium is only half of what makes LFTR special. LFTR uses

molten salt, i.e., liquid fluoride, as a coolant.27 This allows the reactor to

operate without high pressure gasses around the core.28 One proposed

design uses two molten salt systems.29 The first contains the fissile

material and the thorium blanket.30 The molten salt is chemically pro-

cessed to remove waste and is used to introduce new thorium.31 That loop

transfers heat to a second loop of clean molten salt.32 The heat from the

non-radioactive loop generates steam and electricity.33 This eases main-

tenance and reduces the risk of radioactive contamination.34

20 Thorium, WORLD NUCLEAR ASS’N (Sept. 2015), http://www.world-nuclear.org/informa

tion-library/current-and-future-generation/thorium.aspx [https://perma.cc/T5DT-5NQ7].
21 Id.
22 Id.
23 See id.
24 Enriched uranium refers to uranium with a higher proportion of 235U to 238U than

that of naturally occurring uranium. Enriched uranium may be bred artificially in re-

actors or naturally occurring uranium may be segregated using centrifuges. See Uranium

Enrichment, WORLD NUCLEAR ASS’N (May 2016), http://www.world-nuclear.org/information

-library/nuclear-fuel-cycle/conversion-enrichment-and-fabrication/uranium-enrichment

.aspx [https://perma.cc/5CZP-45FF].
25 Hargraves, supra note 1, at loc. 2703.
26 Id. at 6400.
27 Id. at 2599.
28 Id.
29 Id.
30 Id.
31 Hargraves, supra note 1, at loc. 2599.
32 Id.
33 Id. at 2584.
34 Id. 2599.
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c. Current Reactors, Such as PWRs, Can Also Use Thorium

This Note claims LFTR is the optimal, long-term solution to nuclear

power. More precisely, molten salt reactors that breed fertile nuclear ma-

terial from thorium are the solution. LFTR is one example. Other molten

salt reactors may use chloride salts instead of fluoride salts.35 That said,

several reactor types could use thorium in the interim.

For example, thorium can extend the life cycle of uranium in a

modified, once-through LWR.36 A once-through fuel cycle disposes of the

nuclear material after a single use; in contrast, recycled fuel cycles separate

the 233U for further production.37 Recycled fuel coupled with thorium

can extend the usefulness of uranium while reducing the production of

transuranic species.38 Alvin Radkowski founded Lightbridge to create

thorium fuel rods compatible with current reactors, but the rods never

made it to market.39

B. LFTR Is More Sustainable, Has More Abundant Resources,

Lowers Nuclear Weapon Proliferation Risk, and Is Safer

1. Thorium Is Sustainable in LFTR and Can Extend the Life

Span of Uranium in LWRs

Both LFTR and thorium-adapted LWRs last longer and use less

nuclear material compared with the uranium-plutonium fuel cycle in

PWRs.40 With reprocessing, a LWR supplemented by thorium could be

self-sustaining; in contrast, the uranium-plutonium fuel cycle requires

frequent investments of uranium.41 In LWRs one-third of the initial ura-

nium load must be added every eighteen months to sustain productivity.42

The DBI thorium reactor proposed by Thorium Power Canada theoretically

would require only an additional three percent of its thorium load every

35 See WORLD NUCLEAR ASS’N, supra note 11.
36 U.S. NUCLEAR REGULATORY COMM’N, supra note 5, at 6.
37 See id. The latter may be self-recycling, i.e., for the same reactor, or can be used as fuel

in other reactors. Id. at 9.
38 Id. at 6.
39 Hargraves, supra note 1, at loc. 2568.
40 U.S. NUCLEAR REGULATORY COMM’N, supra note 5, at 10.
41 Id. at 5.
42 Thorium vs. Uranium Fuels, THORIUM POWER CANADA, INC. (Feb. 5, 2016), http://www

.thoriumpowercanada.com/technology/the-fuel/thorium-vs-uranium-fuels [https://perma

.cc/DB2W-Q4H2].
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eighteen months.43 This decreases required resources by a factor of ten.

Uranium fuel rods in LWRs suffer structural damages caused by heat and

radiation, requiring suboptimal replacement.44 LFTR avoids this waste

because molten fuel does not suffer the same structural stresses and can

be filtered for waste.45

2. LFTR Produces Less Waste per Unit of Energy and Fewer

Transuranic Byproducts

First, LFTR produces much less waste.46 Direct fission or transmu-

tation could destroy transuranic elements, such as plutonium-239, gener-

ated in a solid fuel reactor, but the solid fuel must be removed long before

this occurs.47 In liquid fuels, such as in LFTR, transuranic products remain

in the core until most undergo fission.48 Therefore, the waste contains

less transuranic material, which means the reactor is more efficient.49

The radiotoxicity of the waste produced, particularly 233U, from

the thorium-uranium fuel cycle is comparable to uranium-plutonium

during the first couple of centuries.50 However, fewer transuranic prod-

ucts mean thorium waste is ten times less radiotoxic between two hun-

dred to one thousand years.51 Some isotopes created in LFTR, e.g., 231Pa

and 229Th, can result in twice the radiotoxicity after the first millennium

and on very long timescales, depending on the type of reactor.52 This means

less waste is produced per kW/hour of electricity than current PWR, and

the waste is less harmful during humanly comprehensible timescales.

3. Thorium Is Much More Common than Uranium

At 9.6 parts per million (“ppm”), thorium is three to four times
more abundant than uranium, which occurs at 2.7 ppm in the Earth’s

43 Id.
44 Robert Hargraves & Ralph Moir, Liquid Fluoride Thorium Reactors, AM. SCI., July–Aug.

2010, at 305, 308, http://thoriumenergyalliance.com/downloads/American_Scientist_Har

graves.pdf [https://perma.cc/RW52-M29J].
45 Id. at 308.
46 Id.
47 Id.
48 Id.
49 Hargraves & Moir, supra note 44, at 308.
50 U.S. NUCLEAR REGULATORY COMM’N, supra note 5, at 5.
51 Id.
52 Id.
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crust.53 This makes thorium about as common as lead.54 The amount of
economically retrievable thorium is difficult to estimate due to a lack of
reliable data.55 Most estimates are based on uranium and rare earth
mineral resources.56 The industry needs better data, but with improving
remote sensing technology and open geographic information systems,
this data is easier to obtain and share than ever before. As data improves
and thorium is retrieved from rare earth mineral mining waste, the cost
of commercially available thorium will fall.

4. Thorium Cannot Be Readily Used in a Nuclear Weapon, and
LFTR’s Design Discourages Proliferation

LFTR requires an initial fissile investment of plutonium and en-
riched uranium.57 LFTR can also use the waste from PWRs as fuel. This
would decrease stockpiles of enriched uranium and plutonium, which
pose a nuclear proliferation risk.58 This is true for the same reason LFTR
produces less waste: higher burn-up and extended cycle lengths.59 Whereas
the fuel rods in LWRs must be replaced before all the fuel is spent, trans-
uranic elements are destroyed during LFTR’s longer fuel cycle.60

Admittedly, thorium is converted into 233U. The International
Atomic Energy Agency (“IAEA”) and United States Nuclear Regulatory
Commission (“NRC”) rank 233U with plutonium and highly enriched ura-
nium as Category I materials.61 However, the uranium produced in LFTR
is not generally considered suitable for nuclear weapons due to contami-
nation by protactinium, very high temperatures, and extreme radiation.62

53 Id. at 4.
54 Element Abundances in the Earth’s Crust, KNOWLEDGEDOOR (Feb. 5, 2016), http://

www.knowledgedoor.com/2/elements_handbook/element_abundances_in_the_earth_s

_crust.html [https://perma.cc/5EVF-7FRF] (listing the natural abundance elements in the

Earth’s crust).
55 BRIAN ADE ET AL., supra note 5, at 4.
56 Id.
57 Hargraves, supra note 1, at loc. 2703.
58 BRIAN ADE ET AL., supra note 5, at 5–6.
59 Id.
60 Hargraves, supra note 1, at loc. 2703.
61 See Nuclear Security Recommendations on Physical Protection of Nuclear Material and

Nuclear Facilities, INT’L ATOMIC ENERGY AGENCY 20 (2011), http://www-pub.iaea.org/MT

CD/publications/PDF/Pub1481_web.pdf [https://perma.cc/4EGN-CRTJ]; Safeguard Cate-

gories of SNM, U.S. NUCLEAR REGULATORY COMM’N (Feb. 5, 2016), http://www.nrc.gov

/security/domestic/mca/snm.html [https://perma.cc/2KGA-ZZ99].
62 See Ralph W. Moir & Edward Teller, Thorium-Fueled Underground Power Plant Based
on Molten Salt Technology, 151 NUCLEAR TECHNOLOGY 334, 337–38 (2005); U.S. NUCLEAR
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LFTR can decrease stockpiles of plutonium and enriched uranium

in the long run. But, transportation and storage of these seed materials

involve a risk of proliferation. A rogue entity looking to create nuclear

weapons could target these stockpiles. Nevertheless, it is unlikely anyone

would use LFTR’s technology to build a nuclear weapons program. If a

state has the plutonium or 235U to start the LFTR reaction, it would be

better off using that to build the weapon. Furthermore, the conversion

rate to 233U is too slow to facilitate large-scale collection.63 If a state

wants to obtain a nuclear weapon, LFTR is a poor means.

5. LFTR Has Inherent and Passive Safety Features Lacking

in PWRs

It may be useful to categorize safety features as “active” and

“passive.” An active safety feature requires electricity and operator inter-

vention to use, e.g., following proper procedures to shut down a LWR’s

nuclear reactor.64 A passive reaction could occur in the absence of both,

e.g., a salt plug melting to drain a LFTR’s tank.65 Passive safety features

have fewer points of failure than their active counterparts, and thus, are

more reliable.66

A pressurized water reactor uses water to cool its core.67 In the

event of a power outage, a PWR’s facilities have many backups in place

to ensure constant cooling.68 As was made abundantly clear at Fukushima,

these “active” failsafes are not always sufficient, especially when a com-

pany disregards proper procedure.69 Due to the nature of solid fuel

reactors, the core continues to react after shutdown for a few days.70 The

Fukushima-Daichi reactor was cooling after being properly shutdown,

REGULATORY COMM’N, supra note 5, at 5–6. This quality is considered further in Parts
II.B.5 and III.C.
63 See WORLD NUCLEAR ASS’N, supra note 20.
64 See INT’L ATOMIC ENERGY AGENCY, Safety related terms for advanced nuclear plants,

http://www-pub.iaea.org/MTCD/publications/PDF/te_626_web.pdf [https://perma.cc/2A3B

-AHV8].
65 Id.
66 Id.
67 See WORLD NUCLEAR ASS’N, supra note 11.
68 George Lerner, What About Fukushima?, LIQUID FLUORIDE THORIUM REACTOR (Mar. 19,

2015), http://liquidfluoridethoriumreactor.glerner.com/2015-what-about-fukushima [https://

perma.cc/7LVE-6Q88].
69 See id.
70 See id.
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yet continued to produce “about 1.5% of their nominal thermal power”

when the power failed.71

Most likely, the Fukushima-Daichi disaster in 2011 could have
been avoided with standard safety protocols and designs.72 The reactor
survived with nothing more than minor damage.73 Even a minimal
amount of electricity would have avoided the meltdown.74 The backup
generators should have been better protected, and the operators should
have brought in a spare generator. Instead, the coolant system failed
completely, leading to an explosion, meltdown, vessel breach, and radio-
active contamination.75 The Fukushima-Daichi facility was not built to
acceptable specifications. The sea walls were inadequate, and the backup
generators’ placement below sea level allowed the tsunami to flood
them.76 Properly built, maintained, and operated, many other nuclear
reactors in the area survived without an issue.77 For example, the
Onagawa reactor was hit harder by the earthquake and tsunami, yet it
remained operational.78

Passive safety features require little to no human intervention or
electricity.79 LFTR is designed with a “negative temperature coefficient
of reactivity.”80 This means the reactor’s power quickly drops if its tem-
perature rises above the operating point.”81 In other words, LFTR cools

rather than heats up if something goes wrong. Even so, a frozen salt plug
would block a pipe leading from the reactor to a containment vessel.82 If
the power failed, the fan cooling the salt plug would stop, allowing it to
melt.83 Unencumbered, the molten salt would drain into a storage tank
designed to handle the high temperatures.84 The excess heat would be

71 Fukushima Accident, WORLD NUCLEAR ASS’N, http://www.world-nuclear.org/info/Safety

-and-Security/Safety-of-Plants/Fukushima-Accident/ [https://perma.cc/A75Z-ZHU6] (last

updated Jan. 2016).
72 See Lerner, supra note 68.
73 Id.
74 See id.
75 See id.
76 Id.
77 See Lerner, supra note 68.
78 Id.
79 See INT’L ATOMIC ENERGY AGENCY, supra note 64.
80 See Kirk Sorensen, Chernobyl and the Central Role of the Temperature Coefficient

(April 25, 2006), http://energyfromthorium.com/2006/04/25/chernobyl-nuclear-safety-and

-the-central-role-of-the-temperature-coefficient/ [https://perma.cc/R8A2-7WYK].
81 Moir & Teller, supra note 62, at 337.
82 GEORGE LERNER, WHAT IS A LFTR, AND HOW CAN IT BE SO SAFE? loc. 170 (2012) (ebook).
83 See id.
84 See id.
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“transferred through heat exchangers that passively carry the heat to the
environment aboveground, while retaining the radioactive material below-
ground.”85 Even if the drainage pipe was damaged, the core would gradu-
ally cool in the reactor.86

Moreover, the inherent design is less dangerous. The risk of a
meltdown is not an issue where the fuel is molten as part of normal
operation.87 As nothing is under pressure, nothing can explosively decom-
press. Even if the core’s containment vessel cracked, the surrounding
facility would be designed to contain the heat.88 As the molten salt solidi-
fied, the radioactive elements would be trapped in the facility.89 Because
fluoride salts bind the fuel, there is little risk of contaminating the air or
ground water.90 This results in a reactor capable of containing a disaster
without electricity or human intervention.

Of course, nothing can be completely infallible. Productivity disrup-
tions are possible, and liquid fuel may leak. The former can be addressed
through diversification of small reactors in many locations.91 Likely, the
worst case scenario of the latter is the loss of the facility, not the city.

II. WHY WAS LFTR ABANDONED?

A. Specific Historical Considerations from the Cold War Played a
Large Role in Thorium’s Modern Obscurity

The cause of LFTR’s abandonment is contentious. Supporters
argue that states abandoned LFTR because it did not produce plutonium
for nuclear weapons.92 Critics respond that technological barriers and the
risk of proliferation doomed LFTR.93 Either way, scientists have consid-

ered thorium for a long time.94

The course of nuclear power was set during the Cold War. In

1954, scientists at the Oak Ridge National Laboratory tested the first

85 Moir & Teller, supra note 62, at 337.
86 LERNER, supra note 82, at loc. 182.
87 See Hargraves & Moir, supra note 44, at 310.
88 Id.
89 Id.
90 Lerner, supra note 68.
91 This would be an example of small modular reactors (“SMR”). Hargraves, supra note

1, at loc. 3760.
92 See Hargraves, supra note 1, at loc. 2681.
93 Oliver Tickell, Promise and Peril of Thorium, WMD JUNCTION, http://wmdjunction.com

/121031_thorium_reactors.htm [https://perma.cc/J2ZM-4525] (last updated Nov. 5, 2012).
94 See Hargraves, supra note 1, at loc. 2570.



2016] THORIUM’S GLOW: LIGHTING THE WAY 305

molten fluoride salt reactor.95 The reactor was built as part of the aircraft

reactor experiment (“ARE”).96 The test was a success and led to the

Fireball jet engine reactor.97 But, it was not meant to be. The invention

of practical, in-flight refueling preempted the Fireball project before

conclusive testing.98

Building on the Fireball project, the Oak Ridge Lab built a molten

salt reactor that operated for four years in the 1960s.99 The experiment

simplified the process by separating 233U breeding from the fission

reaction, but it proved LFTR as a concept.100 It could even remove waste

materials from the molten salt using a complicated chemical process.101

During this period, PWRs were developed to power nuclear sub-

marines. The inventor of the Navy’s PWR, Alvin Weinberg “raised concerns

about its safety compared to the molten salt reactor.”102 This created a

dispute between Wienberg and Milton Shaw, the deputy director of the

AEC. Shaw was entrenched in the fast breeder reactor’s viability and

saw the molten salt reactor as a source of funding.103 Continuing to argue

for LFTR, Weinberg was fired, and LFTR funding ended in 1976.104 The

Nixon administration shifted funding to solid fuel fast breeder reactors

that produced 239P faster than LFTR produced 233U.105 Weinberg later

commented, “[LFTR] was a successful technology that was dropped because

it was too different from the main lines of reactor development.”106

Thorium has featured in a few experiments since then. It was again

tested during a five year experiment at the Shippingport power reactor

from 1977 to 1982.107 Thorium “produced about 1% more fissile material

than it consumed.”108 Germany’s pebble bed reactor used thorium between

95 See id. at 2530.
96 The military wanted long-range bombers to be able to circle the USSR without landing

to refuel. See id.
97 See id.
98 See id.
99 Hargraves, supra note 1, at loc. 2583.
100 See id.
101 See id. Further development today would “require deep chemistry expertise” unfamiliar

to most modern nuclear engineers. Id. at 2694.
102 Id.
103 This is according to Paul Haubenreich, the former project manager at the Oak Ridge

Lab. See id.
104 See Hargraves, supra note 1, at loc. 3760.
105 See id. at 2681.
106 Id.
107 See id. at 2570.
108 Id.
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1983 and 1989.109 Similar to the Oak Ridge Lab experiment in the 1960s,

India has a reactor that separates the breeding and fission processes.110

B. Critics Cite Commercial Infancy, Waste, Insufficient Research

and Mining Data, and the Potential for Terror Bombs

1. Thorium Is Untested on a Commercial Scale

Criticism. Thorium has never been tested on a commercial scale.111

Even in the lab, LFTR is still theoretical because several key components

are missing.112

Response. Scientists have researched thorium since the Manhattan

Project. Moreover, the molten salt reactor at Oak Ridge Lab operated for

five years.113 As noted above, LFTR’s abandonment stems from an inabil-

ity to produce plutonium for Cold War weapons.114 Admittedly, for all its

potential, LFTR is untested as a commercial means of energy produc-

tion.115 But, every untested technology must start somewhere. LFTR is

well-founded and worth the risk that some unforeseen barrier will arise

to prevent commercial viability.

2. Nuclear Waste Would Skyrocket if LFTR Is Used Commercially

Criticism. If LFTR became a major source of electricity production,

the amount of nuclear waste would be multiplied many times over.116

LFTR’s waste may differ from conventional reactors, but it is still hazard-

ous and the half-lives are measured in millennia.117 Even if LFTR produces

less waste, LFTR’s alleged cleanliness depends “on digging some pretty

deep holes to bury the highly radioactive waste.”118

Response. If LFTR replaced the current nuclear reactors, nuclear
waste would fall.119 Moreover, non-nuclear waste products could be

109 Hargraves, supra note 1, at loc. 2570.
110 Id.
111 See Rees, supra note 3.
112 See id.
113 See Hargraves, supra note 1, at loc. 2530.
114 See id. at 2681.
115 See Rees, supra note 3.
116 Id.
117 Id.
118 Id.
119 See Hargraves & Moir, supra note 44, at 309.
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drastically reduced if LFTR became more popular. These can be poorly
contained and dangerous. Fossil fuels pump their negative by-products
directly into the atmosphere. The treatment process for solar panels
includes a host of toxic chemicals released during production and during
the end of life destruction.120 Wind turbines create dangers for birds,
visual interference, and noise pollution.121 Every choice comes with trade-
offs. An increase in nuclear waste comes with a reduction in waste from
other areas.

In fairness, even LFTR’s nuclear waste poses dangers, and nu-
clear waste production would increase if LFTR became common enough.
Despite what some LFTR advocates argue, substantial reprocessing of
nuclear waste would do more harm than good.122 Worse, regulators seem
to have stalled on finding a long-term storage site for nuclear waste.123

Eventually, that will change. While nuclear waste may require deep
holes to contain it, there is something to be said for the security provided
by distance.

3. There Is Not Enough Research into Concentrations of

Economically Accessible Thorium, Making the Price Uncertain

Criticism. Thorium estimates are based on non-thorium specific

searches, e.g., uranium and rare earth minerals.124 The increase in de-

mand for thorium from hundreds of new reactors would drive up the

price.125 Thorium in nuclear waste is not a solution. Reprocessing is

120 See Environmental Impacts of Solar Power, UNION OF CONCERNED SCIENTISTS (Mar. 5,

2013), http://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environ

mental-impacts-solar-power.html [https://perma.cc/6W6W-L85T].
121 See Environmental Impacts of Wind Power, UNION OF CONCERNED SCIENTISTS (Mar. 5,

2013), http://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environ

mental-impacts-wind-power.html [https://perma.cc/R63G-V9FC].
122 See Nuclear Reprocessing: Dangerous, Dirty, and Expensive, UNION OF CONCERNED

SCIENTISTS, http://www.ucsusa.org/nuclear-power/nuclear-plant-security/nuclear-repro

cessing [https://perma.cc/GH6A-6EAD] (last visited Oct. 24, 2016).
123 See The Elusive Permanent Repository, UNION OF CONCERNED SCIENTISTS, http://www

.ucsusa.org/nuclear-power/nuclear-waste/permanent-waste-repository [https://perma.cc

/PKE3-ZUJ4] (last visited Oct. 24, 2016).
124 See generally Ken Salazar & Suzette M. Kimball, Thorium Deposits of the United States,

U.S. GEOLOGICAL SURVEY (2009), http://pubs.usgs.gov/circ/1336/pdf/C1336.pdf [https://

perma.cc/9NZT-5CHU] (providing “an overview of the significant thorium deposits of the

United States” for the next generation of thorium exploration).
125 See K.M.V. JAYARAM, DEP’T OF ATOMIC ENERGY, AN OVERVIEW OF WORLD THORIUM

RESOURCES, INCENTIVES FOR FURTHER EXPLORATION AND FORECAST FOR THORIUM RE-

QUIREMENTS IN THE NEAR FUTURE (1987).
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expensive, time consuming, and counterproductive because it produces

even more waste.126

Response. This criticism has some merit. Better surveys are neces-

sary to assess the accessibility of thorium.127 However, this should not

stop LFTR. Exploration is a key aspect of extraction for all mining. Open

geographic systems and remote sensing technology make obtaining and

sharing this data easier.

The future cost of thorium is difficult to determine. First, waste re-

processing is problematic, and thorium deposits are speculative. Addi-

tionally, thorium has never been demanded on a commercial scale.128

Thorium is as common as lead, but it is radioactive and requires special-

ized mining and processing.129 Thorium should cost less than uranium

because it is four times more abundant.130 So, we can guess that the com-

mercial price should fall somewhere between lead and uranium. Econo-

mies of scale will reduce extraction costs, making it lean more toward

lead. Additionally, less thorium is required in LFTR than uranium in

conventional reactors.131 This means, even if thorium were as expensive

as uranium, energy production with thorium would still be cheaper.

126 See Nuclear Reprocessing: Dangerous, Dirty, and Expensive, supra note 122.
127 See Salazar & Kimball, supra note 124.
128 See Rees, supra note 3.
129 See Element Abundances in the Earth's Crust, supra note 54.
130 Id.
131 U.S. NUCLEAR REGULATORY COMM’N, supra note 5, at 5.
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The price of thorium peaked during the early days of experimenta-

tion.132 Demand was relatively high.133 Since the mid-1960s, thorium prices

fell until demand decreased so much that the price lost meaning.134 Since

the 1980s uranium prices have roughly risen but remain volatile.135 One

take away from these trends is that thorium prices can be explained by

market forces like any other commodity. The commercial supply of thorium

will rise to meet increased demand. Increased supply and economies of

scale will drive the price back down. Once on a commercial scale, the

long-term cost of energy production using LFTR will decrease, eventually

rivaling fossil fuels.

132 See James B. Hedrick, Metal Prices in the United States Through 1998, U.S. DEP’T OF

THE INTERIOR & U.S. GEOLOGICAL SURVEY, 155 fig.Yearend Thorium Price (1999), http://

minerals.usgs.gov/minerals/pubs/commodity/thorium/690798.pdf [https://perma.cc/M9FC

-A3CA]; Uranium Markets, WORLD NUCLEAR ASS’N fig.Uranium (U3O8)Prices, http://www

.world-nuclear.org/info/nuclear-fuel-cycle/uranium-resources/uranium-markets/ [https://

perma.cc/9T65-VGJ5] (last updated Feb. 2015).
133 See id.
134 See Hedrick, supra note 132.
135 See id.
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4. LFTR Would Take Too Long to Implement, and the Nuclear

Industry Does Not Support It

Criticism. If the safety and cost claims were true, the nuclear
industry would back LFTR. Yet, the nuclear industry does not support
thorium or LFTR.136 LFTR would take too much time and money to bring
it to fruition. Either way, as a National Nuclear Laboratory report con-
cluded, the “claims for thorium were ‘overstated.’ ”137

Response. The timing of LFTR is primarily a function of priority,
not engineering ability. Cross-field researchers built the atomic bomb,
which was inconceivable a few decades before, in a very short period of
time.138 With the Manhattan Project’s focus and funding, LFTR could be
operational within a decade.139 With reasonable funding, LFTR could be
operational within twenty years.140

The cost of production per reactor would be cheaper than LWRs

thanks to a simpler design associated with liquid fuels, e.g., no need for

a complex coolant system to hold high pressure water.141 However, the

current nuclear industry has sunk large costs in PWRs.142 It has little

incentive to invest the capital necessary to convert old facilities or build

new facilities. The American government’s subsidies are designed to

increase profits, not R&D, by reducing taxes.143 The industry’s lack of

support does not indicate the lack of a feasible idea so much as a lack of

incentives created by sunk costs and subsidies. Moreover, several pri-

vately funded projects undermine the claim that the nuclear industry is

against LFTR and thorium.144

136 See Rees, supra note 3.
137 Id. (citing The Thorium Fuel Cycle, UK NATIONAL NUCLEAR LABORATORY (Aug. 2010),

http://www.nnl.co.uk/media/1050/nnl__1314092891_thorium_cycle_position_paper.pdf

[https://perma.cc/G4AD-V4P6]).
138 VINCENT C. JONES, MANHATTAN: THE ARMY AND THE ATOMIC BOMB 11–12, 28, 149–50

(1985).
139 George Lerner, Manufacturing LFTRs Easier than Other Reactors, LIQUID FLUORIDE

THORIUM REACTOR (Jan. 17, 2012), http://liquidfluoridethoriumreactor.glerner.com/2012

-manufacturing-lftrs-easier-than-other-reactors/.
140 See id.
141 See id.
142 World Nuclear Assoc., Nuclear Power in the USA, http://www.world-nuclear.org/informa

tion-library/country-profiles/countries-t-z/usa-nuclear-power.aspx (last updated Sept. 26,

2016).
143 Hargraves, supra note 1, at loc. 5453.
144 See infra Part III.A for a brief overview of these projects.
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5. The 233U Created by LFTR Poses a Proliferation Risk

Criticism. LFTR converts thorium into 233U. This uranium could
be extracted from the reactor and used to make a nuclear weapon.145 A
state could harvest large amounts of very pure 233U without alerting the
international community.146

Response. As previously discussed, LFTR creates 233U from tho-
rium.147 However, not all uranium is equally suitable for nuclear weap-
ons.148 Weapons grade uranium, i.e., highly enriched uranium, requires
a high proportion of 235U, not 233U.149 Moreover, LFTR does not convert
thorium fast enough to make it an efficient means of 233U breeding with-
out sacrificing energy production.150 But even if it did, any 233U gener-
ated from LFTR is not well suited for a nuclear weapon because it is
contaminated with 232U.151 A state could attach a device to extract protac-
tinium, which is one source of 232U impurities; however, IAEA monitoring
would mitigate this risk.152 To further undermine proliferation attempts,
the 233U could be diluted with 238U.153

There are inherent barriers in LFTR to retrieving the 233U, e.g.,
high temperatures and radiation.154 But, with extreme cost and difficulty,
a state could extract pure 233U from LFTR.155 With modern technology,
it may be able to build a new type of nuclear weapon powered by 233U.
But, there are much easier and cheaper ways for a state seeking to obtain
nuclear weapons. It could divert the 235U it used to start the reactor.
LFTR’s advantages outweigh the risk that a state may irrationally choose
to pursue LFTR to build a nuclear weapon.

III. HOW DO WE GET TO LFTR AND HOW COULD IT SOLVE THE

POTENTIAL FOR IRANIAN PROLIFERATION?

Consequences aside, the Manhattan Project was one of the most
significant technological undertakings of the 20th century. It required

145 Tickell, supra note 93.
146 Id.
147 See supra Part I.A.2.b.
148 Moir & Teller, supra note 62, at 337.
149 SOUTH AFRICA LFTR ENERGY, Superior Design Advantages Over All Other Nuclear
Reactor Designs of LFTR 7 (n.d.) (considering the nonproliferation attributes of LFTR).
150 See WORLD NUCLEAR ASS’N, supra note 20.
151 See SOUTH AFRICA LFTR ENERGY, supra note 149, at 7 (explaining three ways 233U
could be contaminated by 232U within LFTR).
152 See id.
153 See id.
154 See id.
155 See Tickell, supra note 93.
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the collaboration of scientists from many different nationalities and aca-
demic fields, e.g., nuclear physics, chemistry, and engineering.156 Even
more impressively, this hodgepodge group in the New Mexican desert
achieved their goal in a handful of years.157 It took World War II and the
might of the U.S. government to bring these groups together and usher
in the era of “big science.”158 Today, we have the luxury of slightly more
time, but perhaps the consequences of failure are just as grave. An inter-
national approach will be necessary to solve these challenges. States need
to create an international agency to organize efforts and shift R&D fund-
ing to support LFTR.

A. International Collaboration Would Speed the Process of
Achieving LFTR by Reducing Redundancies, Thereby
Creating More Efficient Funding

Today’s technology allows scientists all over the world to collabo-
rate in a way that the Manhattan Project scientists could scarcely imagine.
There are several LFTR projects across the world. India plans an ambi-
tious LFTR and thorium-based nuclear strategy due to scarce uranium
deposits and ample sources of thorium.159 China is perhaps the closest to
realizing a thorium reactor with a ten-year deadline.160 There are also
projects in Canada, Denmark, Germany, Japan, Norway, South Africa,
the United States, and the United Kingdom.161

There has been some collaboration, for example, between the
Canada Deuterium Uranium reactor (“CANDU”) and the Chinese nuclear

156 U. Pitt., The Manhattan Project, http://www.pitt.edu/~sdb14/atombomb.html [https://

perma.cc/FPR7-B5J3] (last visited Oct. 24, 2016).
157 F. G. GOSLING, U.S. DEP’T OF ENERGY, The Manhattan Project: Making the Atomic Bomb,

64–73 (Jan. 2010), http://energy.gov/sites/prod/files/Manhattan_Project_2010.pdf [https://

perma.cc/U3UJ-9YXH].
158 Charu Anchlia et al., Scientific Networks and The Bomb 3 (May 9, 2011) (unpublished

final project, Harvard University Kennedy School of Government) (http://ocw.mit.edu/courses

/media-arts-and-sciences/mas-961-networks-complexity-and-its-applications-spring

-2011/assignments/MITMAS_961S11_Networkpaper.pdf) [https://perma.cc/2X5T-2XXT].
159 See generally GOV’T OF INDIA, Long Term Vision of the Department of Atomic Energy,

http://www.nti.org/media/pdfs/26_8.pdf?_=1316719689 (last visited Oct. 24, 2016) (ex-

plaining the long-term strategy of India’s Department of Atomic Energy) [https://perma

.cc/53B7-HBAV].
160 Ari Phillips, China’s Plan To Develop Totally New Nuclear Fuel Speeds Up, THINK PROG-

RESS, Mar. 20, 2014 2:38 PM, https://thinkprogress.org/chinas-plan-to-develop-totally-new

-nuclear-fuel-speeds-up-a27a4193675c#.nxyfjbyzf [https://perma.cc/6KRK-2CNB].
161 See INT’L THORIUM ENERGY ORG., Thorium Energy Report CANDU, http://www.thorium

energyworld.com/candu.html [https://perma.cc/58QF-2U65] (last visited Oct. 24, 2016).
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agency.162 Moreover, the Safety Assessment of the Molten Salt Fast
Reactor (“SAMOFAR”) is a consortium of eleven universities and research
laboratories.163 That said, many of these thorium and LFTR projects col-
laborate with only one or two partners or within a region.164 For example,
SAMOFAR is primarily a European consortium supported by the Euro-
pean Commission.165 Notwithstanding these efforts, a collaboration of the
international community as a whole could be much more effective. Given
the breadth of projects all over the world, many of these projects overlap.

Ideally, an international agency could assign projects addressing

different aspects of LFTR research. Institutions could then focus funding

on novel technical barriers to LFTR. The agency could work within an ex-

isting organization, e.g., through the IAEA or UN, or be formed ad hoc.166

Here are four key points to the proposed Commission: (1) Commission

research is available to all members; (2) the Commission assigns research

projects to member states considering economic feasibility, technical

specialties, and state requests; (3) only state-operated or state-subsidized

institutions conducting nuclear research in a member state are required

to participate; and (4) the Commission’s mandatory assignments become

voluntary after the first commercially viable LFTR prototype goes online.

First, the proposed International Commission on LFTR is a topic-

specific international agency dedicated to creating a commercially viable

LFTR prototype as quickly, efficiently, and cheaply as possible. By ne-

cessity, the research gathered by the Commission would be available to

all members. This allows each institution to understand how its assigned

project fits within the greater whole. Furthermore, it would allow the

members to build upon the completed LFTR prototype with proprietary

technology.

Second, some institutions will have the technical knowledge or the
financial backing to complete an assignment more efficiently than others.
The Commission’s Assignment Committee must efficiently allocate assign-
ments across the world. To this end, the Committee would include nu-
clear physicists, chemists, engineers, and diplomats. States seeking to join
the Commission must ensure state-funded programs find a solution to

162 Id.
163 Id.
164 See id.
165 See id.; SAMOFAR, Consortium, http://samofar.eu/consortium/ (last visited Oct. 24,

2016) [https://perma.cc/PXJ6-B6AX].
166 This proposed international organization will be referred to within this Note as the

“International Commission on LFTR” or “Commission.”
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their assignments. Similarly, private institutions and public institutions
from non-member states may opt-in by accepting an assignment from the
Committee. The assigned problem is by no means the only project that
the institution can research. But, the Commission is only effective so long
as its members are willing to contribute to their assignments. It may be
most efficient to assign multi-institutional workgroups to address the same
issue, e.g., single versus double fluid LFTR systems or mapping thorium
deposits. Potential assignments also include how to handle protactinium
and graphite core problems.167

The Commission would be an opt-in collaborative. The mandatory

phase for member states only affects certain state-funded programs.

Because this approach is only mandatory for state subsidized research,

there is little worry about undermining free competition. The purely pri-

vate firms would be welcome to contribute to the Commission, but may

be hesitant to do so for fear of losing a competitive advantage.

Briefly, it is worth noting that this federalist style system is not

the only option. Vertical integration may work as well. This would require

member states to contribute money directly to the Commission, and the

Commission redistribute the funds as needed. The primary issue with

this approach is that states would have to relinquish control.

Finally, the Commission need not last forever. The mandatory

assignments become optional upon the completion of the first commer-

cially viable LFTR. It would be sufficient for the collaborative effort to

produce a working LFTR prototype, which is available to all Commission

institutions, if not the public. Thereafter, it could allow the private market

to improve upon these designs. Alternatively, the collaboration could con-

tinue as a voluntary agency. Either way, the Commission would combine

short-term efficiencies of interstate cooperation while preserving the

long-term incentives created by competition.

B. The U.S. and Other States Should Reallocate Energy and

Nuclear Subsidies to Support LFTR

The International Energy Agency and Nuclear Energy Agency

issued a joint technology roadmap in 2015.168 One of the key findings is

167 See Charles Barton, What Are The Problems With LFTR Technology?, THE ENERGY

COLLECTIVE (Aug. 29, 2011), http://www.theenergycollective.com/charlesbarton/64177

/what-are-problems-lftr-technology [https://perma.cc/X4LW-PRX2].
168 INT’L ENERGY AGENCY & NUCLEAR ENERGY AGENCY, Technology Roadmap: Nuclear
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Figure 2: IEA Total Public Energy RD&D

the continued role for governments in nuclear R&D, “especially in the

area of nuclear safety, advanced fuel cycles, waste management and inno-

vative designs.”169 This is in response to falling levels of nuclear R&D.

Nuclear research, development, and demonstration (“RD&D”) has fallen

drastically in the past forty years.170 In 1974, nuclear dominated with 74%

of the public energy RD&D budget.171 By 2014, nuclear RD&D fell to

23%.172 In contrast, renewables have expanded from 3% to 20%.173

My proposed International Commission on LFTR follows the trend

within nuclear research of pooling resources in response to decreasing

national R&D budgets.174 In absolute terms, the U.S. has been, and re-

mains, the largest contributor to energy RD&D.175 However, as a function

of GDP per capita, the U.S. makes a much more modest contribution.176

Energy 7 (2015), http://www.iea.org/publications/freepublications/publication/Nuclear
_RM_2015_FINAL_WEB_Sept_2015_V3.pdf [https://perma.cc/JZ4U-UT5X].
169 Id. at 5.
170 INT’L ENERGY AGENCY, Key trends in IEA public energy technology research, develop-

ment and demonstration (RD&D) budgets 2, fig.2 (2015), http://wds.iea.org/wds/pdf/IEA

_RDD_Factsheet_2015.pdf [https://perma.cc/8XN5-3NUW].
171 See id.
172 See id.
173 See id.
174 INT’L ENERGY AGENCY & NUCLEAR ENERGY AGENCY, supra note 168, at 48.
175 INT’L ENERGY AGENCY, supra note 170, at 2–5.
176 See id.
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In 2015, the U.S. Department of Energy selected sixty-eight nuclear
R&D projects to fund with over $60 million.177 Yet, of these selections only
a handful are international collaborations.178 Moreover, very few, if any, of
the U.S. nuclear subsidies are directly attributed to thorium or molten salt
reactors. Reallocation of subsidies and an international collaboration seems
imperative for LFTR to come to market within any reasonable time frame.

C. The International Community Could Use LFTR in States
That Want the Benefits of Nuclear Power but Where
Nuclear Proliferation Is a Concern

For the past several decades, nuclear power has promised cheap,
limitless energy. So far this promise has been met with mediocre results.
Nevertheless, thirty countries worldwide operated 438 nuclear reactors
to produce 10.9% of the world’s electricity in 2012.179 France relies on
nuclear power for three-quarters of its electricity.180 With rising nuclear
interest, more states want the benefits of nuclear power.181 Yet, many
worry over the dangers of nuclear technology. If states like Iran were to
obtain a nuclear weapon, other states in the region, such as Saudi Arabia
and Egypt, may feel sufficiently threatened to start nuclear research as
well. It would be all too easy to adapt the infrastructure and knowledge
of PWRs to nuclear weapons. This could lead to more nuclear armed
states—a dangerous proposition.

President Obama heralded the 2015 Joint Comprehensive Plan
of Action between the P5+1,182 the EU, and Iran as the short- to mid-term
solution to Iran’s nuclear aspirations.183 He asserted that Iran cannot build
a bomb covertly and that “we have now cut off every single path that Iran
could have used to build a bomb.”184 President Obama emphasized in his

177 U.S. Department of Energy Funding for Nuclear R&D, WORLD NUCLEAR NEWS (June 8,
2015), http://www.world-nuclear-news.org/NN-DOE-funding-for-nuclear-R-and-D-0806
157.html [https://perma.cc/9AND-AR25].
178 See id.
179 Knowledge Center, World Statistics: Nuclear Energy Around the World, NUCLEAR ENERGY

INSTITUTE (July 2015), http://www.nei.org/Knowledge-Center/Nuclear-Statistics/World
-Statistics [https://perma.cc/5ZTF-4RBQ].
180 Id.
181 See id.
182 The P5+1 consists of Germany plus the five permanent members of the United Nations
Security Council: China, France, Germany, the United Kingdom, and the United States.
183 Interview by Steve Inskeep with Barack Obama, U.S. President, Whitehouse (Apr. 7,
2015 5:03 AM), http://www.npr.org/2015/04/07/397933577/transcript-president-obamas
-full-npr-interview-on-iran-nuclear-deal [https://perma.cc/BWJ5-5FLG].
184 Barack Obama, U.S. President, Remarks on the Iran Nuclear Deal, 3:20 (Jan. 16, 2016),

https://www.whitehouse.gov/issues/foreign-policy/iran-deal [https://perma.cc/L9ER-PM7J].
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speech that the breakout time185 for Iran will increase from three months
to over a year.186 However, the nuclear deal allows Iran to continue en-
riching uranium, albeit only to the purity suitable for civilian use and with
international oversight.187 Obama conceded that when the deal expires in
ten to fifteen years, Iran’s breakout time will be very short.188 He con-
tended that it is better to work with Iran today and know its capabilities
for when the deal ends.189

The current Iranian deal is fundamentally a delaying tactic. Even

assuming (1) the international community can effectively monitor all of

Iran and (2) the U.S. and international community would be willing and

able to stop Iran, the world is back where it started in fifteen years. At best,

Iran will be weeks or months away from breakout. LFTR would address

the underlying problem by replacing proliferation prone nuclear reactors

with a technology that is proliferation resistant.190

An alternative deal based on LFTR would look something like

this: within fifteen years Iran must disable three-quarters of its non-LFTR

reactors and the remaining within twenty years. Like the actual deal,

Iran would be subject to IAEA monitoring.191 Iran would be encouraged

to collaborate with international researchers to create LFTR. Iranian

reactors would not be allowed to filter protactinium or take other mea-

sures to obtain pure 233U. Furthermore, the energy production of every

LFTR facility would be monitored by the IAEA. Presently, Iran must

dismantle uranium enrichment facilities and greatly reduce enriched ura-

nium stockpiles in the next few years.192 The enriched uranium may be

held by the IAEA or UN Security Council in trust for Iran. The IAEA will

facilitate the sale or return of enriched uranium to Iran to seed new

LFTR facilities. This enriched uranium will be subject to a chain of custody

by the IAEA and constant monitoring until processed by the reactor.

185 The breakout time is the period it would take a state to gather enough nuclear material

for a bomb.
186 Barack Obama, U.S. President, Remarks on the Iran Nuclear Deal, 3:48 (Jan. 16, 2016),

https://www.whitehouse.gov/issues/foreign-policy/iran-deal [https://perma.cc/THD2-LZKY].
187 Eyder Peralta, 6 Things You Should Know About The Iran Nuclear Deal, NPR (July 14,

2015), http://www.npr.org/sections/thetwo-way/2015/07/14/422920192/6-things-you-should

-know-about-the-iran-nuclear-deal [https://perma.cc/8789-H5JR].
188 Interview by Steve Inskeep with Barack Obama, supra note 184.
189 Id.
190 See Superior Design Advantages, supra note 149, at 7–11.
191 The Iran Nuclear Deal: What You Need to Know about the JCPOA, WHITE HOUSE 6,

https://www.whitehouse.gov/sites/default/files/docs/jcpoa_what_you_need_to_know.pdf

[https://perma.cc/V5HD-KFJQ].
192 Peralta, supra note 187.
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This would have several immediate effects. First, Iran would be
encouraged to work with the international community to create a LFTR
prototype. Also, it would change the incentives of the Iranian nuclear
program. In fifteen years, all of its PWRs would be dismantled. This would
eliminate the need for enrichment facilities. Currently, that infrastruc-
ture could produce weapons grade uranium.193 Instead of an even more
dangerous Iran in fifteen years, the breakout time would be substantially
longer because it would have to rebuild the enrichment facilities.

Like the actual nuclear deal, the IAEA would monitor the Iranian
nuclear program. If Iran were to secretly attach protactinium removal
equipment to start syphoning off substantial amounts of pure 233U, it
would be obvious to the IAEA. The energy production would plummet.
Under the actual deal, IAEA monitoring will become increasingly necessary
as the Iranian nuclear program progresses. Under my alternative plan,
the IAEA would become less important as the current reactors and en-
richment facilities are phased out. The IAEA would only monitor electric-
ity production and facilitate the initial investments of uranium for new
LFTR facilities. In this way, Iran would move towards a sustainable
nuclear program with reduced risk of proliferation.

CONCLUSION

Under the pressure of global warming, LFTR has the potential for
new life. LFTR has been considered and abandoned several times; how-
ever, abandonment has been due to preemption, rather than failure.194

In the 1940s, LFTR could not produce the Bomb. In the 1950s, the Fireball
jet engine was preempted by the advent of in-flight fueling.195 In the 1960s
and 1970s, Cold War politics and plutonium reined it in once again.196

Since then, thorium has resurfaced for an occasional experiment.197

LFTR is gaining traction today all over the world from government
projects in China198 and India199 to private projects, such as Lightbridge
and ThorEnergy.200 Thanks to large thorium deposits and little uranium,

193 Id.
194 See Hargraves, supra note 1, at 2681.
195 See id. at 2530.
196 Id.
197 See id. at 2570.
198 Nuclear Power in India, WORLD NUCLEAR ASS’N, http://www.world-nuclear.org/informa
tion-library/country-profiles/countries-g-n/india.aspx [https://perma.cc/H9MJ-MMK9] (last
updated Jan. 2016).
199 Phillips, supra note 160.
200 Hargraves, supra note 1, at loc. 2568.
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India and Norway are early advocates of thorium.201 By 2050, India plans
to use nuclear energy, including plans for LFTR, for 25% of its elec-
tricity.202 Only time will tell if something comes along to preempt LFTR
once again.

That said, thorium used in LFTR could be the solution to fossil
fuels and the answer to anti-nuclear advocates. LFTR differs from pres-
surized water reactors in several material respects. LFTR uses thorium
immersed in molten salt at atmospheric pressure.203 PWRs use solid fuel

pellets, which must be cooled by hot, highly pressurized water.204 LFTR
has inherent and passive safety features that do not require operator
intervention or electricity.205 Even “modern” pressurized water reactors
harken back to designs from the 1950s.206 LFTR is not a new idea, but its
design can escape the inertia of outdated reactor designs in a way that
PWRs cannot.

The United Kingdom’s National Nuclear Laboratory (“NNL”) is
much less optimistic about thorium.207 The NNL estimates that it is “likely
to take 10 to 15 years even with a concerted R&D effort and investment
before the thorium fuel cycle could be established in current reactors and
much longer for any future reactor systems.”208 Perhaps NNL is correct
that thorium would take more than a decade to bring into common usage.
However, predicting nuclear technology has been difficult, and technology
has exponentially progressed in the last hundred years.

Once U.S. and foreign policymakers appreciate the opportunity,
there are several ways they can encourage LFTR. First, like Norway and
India, the U.S. has substantial thorium resources that can be exploited.
However, mapping and accessibility assessments are sparse. Collecting
data and collaborating with the nuclear and mining industries would
improve prospects for commercialization. Similarly, several key technolo-
gies must be better developed before LFTR can be used on a commercial
scale. Many of these technologies are chemistry dominant and would

201 See generally GOV’T OF INDIA, supra note 159; Christ Rhodes, Thorium Nuclear Power—A

Lesson from Norway, FORBES (Feb. 29, 2012 at 1:07 PM) http://www.forbes.com/sites

/energysource/2012/02/29/thorium-nuclear-power-a-lesson-from-norway/#272aa6a0187f.
202 WORLD NUCLEAR ASS’N, supra note 198.
203 Hargraves, supra note 1, at 2599.
204 WORLD NUCLEAR ASS’N, supra note 11.
205 Lerner, supra note 68.
206 WORLD NUCLEAR ASS’N, supra note 11.
207 The Thorium Fuel Cycle, UK NAT’L NUCLEAR LABORATORY (Aug. 2010), http://www

.nnl.co.uk/media/1050/nnl__1314092891_thorium_cycle_position_paper.pdf [https://perma

.cc/8EC4-8UL4].
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require a collaboration between chemists and nuclear engineers. Given
the broad scope of international projects, an interstate agency organizing
government subsidized research would allow international collaboration
to reduce redundancies, make funding more efficient, and move up the
LFTR timetable.

Moreover, already existing government subsidies in energy R&D

can be reallocated to encourage the nascent LFTR industry in research

and construction. Finally, LFTR provides a potential solution for nuclear

proliferation in states like Iran. While not absolute, LFTR has inherent

barriers to weaponization that make it an inefficient means of produc-

tion. After seventy years, it is time the U.S. took the back the impetus of

nuclear technology and led the world into a more energy efficient future.


	William & Mary Environmental Law and Policy Review
	Thorium’s Glow: Lighting the Way for Safe, Cheap Energy Production
	Zachary Hawari
	Repository Citation


	6-Hawari.pdf

